• Title/Summary/Keyword: ATCOR

Search Result 4, Processing Time 0.022 seconds

Vicarious Radiometric Calibration of RapidEye Satellite Image Using CASI Hyperspectral Data (CASI 초분광 영상을 이용한 RapidEye 위성영상의 대리복사보정)

  • Chang, An Jin;Choi, Jae Wan;Song, Ah Ram;Kim, Ye Ji;Jung, Jin Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.3-10
    • /
    • 2015
  • All kinds of objects on the ground have inherent spectral reflectance curves, which can be used to classify the ground objects and to detect the target. Remotely sensed data have to be transferred to spectral reflectance for accurate analysis. There are formula methods provided by the institution, mathematical model method and ground-data-based method. In this study, RapidEye satellite image was converted to reflectance data using spectral reflectance of a CASI hyperspectral image by using vicarious radiometric calibration. The results were compared with those of the other calibration methods and ground data. The proposed method was closer to the ground data than ATCOR and New Kurucz 2005 method and equal with ELM method.

Comparison of Digital Number Distribution Changes of Each Class according to Atmospheric Correction in LANDSAT-5 TM (LANDSAT-5 TM 영상의 대기보정에 따른 클래스별 화소값 분포 변화 비교)

  • Jung, Tae-Woong;Eo, Yang-Dam;Jin, Tailie;Lim, Sang-Boem;Park, Doo-Youl;Park, Hwang-Soo;Piao, Minghe;Park, Wan-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Due to increasing frequency of yellow dust, not to mention high rate of precipitation and cloud formation in summer season of Korea, atmospheric correction of satellite remote sensing is necessary. This research analyzes the effect of atmospheric correction has on imagery classification by comparing DN distribution before and after atmospheric correction. The image used in the research is LANDSAT-5 TM. As for atmospheric correction module, commercial product ATCOR, FLAASH as well as COST model released on the internet, were used. The result of experiment shows that class separability increased in building areas.

USING MODIS DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHIAYI PLAIN

  • Ho, Han-Chieh;Liou, Yuei-An;Wang, Chuan-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.317-319
    • /
    • 2008
  • Traditionally, it is measured by using basin or empirical formula with meteorology data, while it does not represent the evaportransporation over a regional area. With the advent of improved remote sensing technology, it becomes feasible to assess the ET over a regional scale. Firstly, the IMAGINE ATCOR atmospheric module is used to preprocess for the MODIS imagery. Then MODIS satellite images which have been corrected by radiation and geometry in conjunction with the in-situ surface meteorological measurement are used to estimate the surface heat fluxes such as soil heat flux, sensible heat flux, and latent heat flux. In addition, the correlation coefficient between the derived latent heat and the in-situ measurement is found to be over 0.76. In the future, we will continue to monitor the surface heat fluxes of paddy rice field in Chiayi area.

  • PDF

A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery (드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석)

  • Jeon, Eui-ik;Kim, Kyeongwoo;Cho, Seongbeen;Kim, Shunghak
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.203-215
    • /
    • 2019
  • As hyperspectral sensors that can be mounted on drones are developed, it is possible to acquire hyperspectral imagery with high spatial and spectral resolution. Although the importance of atmospheric correction has been reduced since imagery of drones were acquired at a low altitude,studies on the conversion process from raw data to spectral reflectance should be done for studies such as estimating the concentration of surface materials using hyperspectral imagery. In this study, a vicarious radiometric calibration and an atmospheric correction algorithm based on atmospheric radiation transfer model were applied to hyperspectral data of drone and the results were compared and analyzed. The vicarious calibration method was applied to an empirical line calibration using the spectral reflectance of a tarp made of uniform material. The atmospheric correction algorithm used ATCOR-4 based Modran-5 that was widely used for the atmospheric correction of aerial hyperspectral imagery. As a result of analyzing the RMSE of the difference between the reference reflectance and the correction, the vicarious calibration using the tarp in a single period of hyperspectral image was the most accurate, but the atmospheric correction was possible according to the application purpose of using hyperspectral imagery. If the correction process of normalized spectral reflectance is carried out through the additional vicarious calibration for imagery from multiple periods in the future, accurate analysis using hyperspectral drone imagery will be possible.