DOI QR코드

DOI QR Code

Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes

  • Jang, Kab-Yeul (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Cho, Soo-Muk (Functional Food & Nutrition Division National Academy of Agricultural Science) ;
  • Seok, Soon-Ja (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kim, Gyu-Hyun (Department of Horticultural Bio-Industry, Cheonan Yonam College) ;
  • Sung, Jae-Mo (Department of Agricultural Biology, Kangwon National University)
  • Published : 2009.03.31

Abstract

The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cellulosic material, 35 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye. In the laccase enzymatic analysis chemical test, 33 white rot fungi and 2 brown rot fungi were identified. The degradation ability of polycyclic aromatic hydrocarbons (PAHs) according to the utilized environmental conditions was higher in the mushrooms grown in dead trees and fallen leaves than in the mushrooms grown in humus soil and livestock manure. Using Poly-R 478 dye to assess the PAH-degradation activity of the identified strains, four strains, including Agrocybe pediades, were selected. The activities of laccase, MnP, and Lip of the four strains with PAH-degrading ability were highest in Pleurotus incarnates. 87 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye on solid media. Using Poly-R 478 dye to assess the PAHdegrading activity of the identified strains, it was determined that MKACC 51632 and 52492 strains evidenced superior activity in static and shaken liquid cultures. Subsequent screening on plates containing the polymeric dye poly R-478, the decolorization of which is correlated with lignin degradation, resulted in the selection of a strain of Coriolus versicolor, MKACC52492, for further study, primarily due to its rapid growth rate and profound ability to decolorize poly R-478 on solid media. Considering our findings using Poly-R 478 dye to evaluate the PAH-degrading activity of the identified strains, Coriolus versicolor, MKACC 52492 was selected as a favorable strain. Coriolus versicolor, which was collected from Mt. Yeogi in Suwon, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP).

Keywords

References

  1. Anoliefo, G. O., Isikhuemhen, O. S. and Okosolo, E. C. 1999. Traditional coping mechanisms and environmental sustainability strategies in Nnewi. J. Agric. Environ. Ethics. 11:101-109 https://doi.org/10.1023/A:1009564804849
  2. Asada, Y., Watanabe, A., Irie, T., Nakayama, T. and Kuwahara, M. 1995. Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. Biochim. Biophys. Acta. Protein. Struct. Mol. Enzym. 1251:205-209 https://doi.org/10.1016/0167-4838(95)00102-Z
  3. Bumpus, J., Tien, M., Wright, D. and Aust, S. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434-1436 https://doi.org/10.1126/science.3925550
  4. Camarero, S., Sarkar, S., Ruiz-Dueñas, F. J., Martinez, M. J. and Martinez, A. T. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274:10324-10330 https://doi.org/10.1074/jbc.274.15.10324
  5. Cohen, R., Hadar, Y. and Yarden, O. 2001. Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ. Microbiol. 3:312-322 https://doi.org/10.1046/j.1462-2920.2001.00197.x
  6. Dass, S. B. and Reddy, C. A. 1990. Characterization of extracellular peroxidases produced by acetate-buffered cultures of Phanerochaete chrysosporium. FEMS Microbiol. Lett. 69:221-224 https://doi.org/10.1111/j.1574-6968.1990.tb04233.x
  7. Deguchi, T., Kakezawa, M. and Nishida, T. 1997. Nylon biodegradation by lignin-degrading fungi. Appl. Environ. Microbiol. 63:329-331
  8. Deguchi, T., Kitaoka, Y., Kakezawa, M. and Nishida, T. 1998. Purification and characterization of a nylon-degrading enzyme. Appl. Environ. Microbiol. 64:1366-1371
  9. D'Souza, T. M., Boominathan, K. and Reddy, C. A. 1996. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl. Environ. Microbiol. 62:3739-3744
  10. Ehara, K., Tsutsumi, Y. and Nishida, T. 1997. Biobleaching of softwood and hardwood kraft pulp with manganese peroxidase. Mokuzai Gakkaishi. 43:861-868
  11. Ehara, K., Sutsumi, T. and Nishida, Y. 2000. Polyethylene degradation by manganese peroxidase in the absence of hydrogen peroxide. J. Wood Sci. 46:180-183 https://doi.org/10.1007/BF00777369
  12. Eriksson, K. E. L., Blanchette, R. A. and Ander, P. 1990. Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York
  13. Giardina, P., Aurilia, V., Cannio, R., Marzullo, L., Amoresano, A., Siciliano, R., Pucci, P. and Sannia, G. 1996. The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur. J. Biochem. 235:508-515 https://doi.org/10.1111/j.1432-1033.1996.00508.x
  14. Gold, M. K., Glenn, J. K. and Alic, M. 1988. Use of polymeric dyes in lignin biodegradation assays. Methods Enzymol. 161:74-78 https://doi.org/10.1016/0076-6879(88)61011-1
  15. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13:125-135 https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  16. Iiyoshi, Y., Tsutsumi, Y. and Nishida, T. 1998. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J. Wood Sci. 44:222-229 https://doi.org/10.1007/BF00521967
  17. Joshi, D. and Gold, M. 1993. Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59:1779-1785
  18. Jaouani, A., Sayadi, S., Vanthournhout, M. and Penninck, M. J. 2003. Potent fungi for decolourisation of olive oil mill wastewaters. Enzyme Microb. Technol. 33:802-809 https://doi.org/10.1016/S0141-0229(03)00210-2
  19. Kashino, Y., Nishida, T., Takahara, Y., Fujita, K., Kondo, R. and Sakai, K. 1993. Biomechanical pulping using white rot fungus IZU-154. Tappi J. 76(12):167-171
  20. Katagiri, N., Tsutsumi, Y. and Nishida, T. 1995. Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Appl. Environ. Microbiol. 61:617-622
  21. Tekerea, M., Mswakab, A. Y., Zvauyaa, R. and Reada, J. S. 2001. Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb. Technol. 28:420-426 https://doi.org/10.1016/S0141-0229(00)00343-4
  22. Kirk, T. K. and Farrell, R. L. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465-505 https://doi.org/10.1146/annurev.mi.41.100187.002341
  23. Niku-Paavola, M. L., Karhunen, E., Salola, P. and Raunio, V. 1988. Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem. J. 254:877-884 https://doi.org/10.1042/bj2540877
  24. Nishida, T., Tsutsumi, Y., Kemi, M., Haneda, T. and Okamura, H. 1999. Decolorization of anthraquinone dyes by whiterot fungi and its related enzymes. J. Jpn. Soc. Water Environ. 22:465-471 (in Japanese) https://doi.org/10.2965/jswe.22.465
  25. Ollikka, P., Alhonmaki, K., Leppanen, V. M., Glumo, T., Raijola, T. and Suominen, I. 1993. Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxi-dase isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59:4010-4016
  26. Paice, M., Reid, I., Bourbonnais, R., Archibald, F. and Jurasek, L. 1993. Manganese peroxidase, produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Appl. Environ. Microbiol. 59:260-265
  27. Paszczynski, A., Crawford, R. L. and Huynh, V. B. 1988. Manganese peroxidase of Phanerochaete chrysosporium: Purification. Methods Enzymol. 161:264-270 https://doi.org/10.1016/0076-6879(88)61028-7
  28. Rinker, D. L. 2002. Handling and using “spent” mushroom substrate around the world. In: Sánchez JE, Huerta G, Montiel E (eds) Mushroom biology and mushroom products. Impresos Júpiter, Cuernavaca, pp. 43-60
  29. Sannia, G., Limongi, P., Cocca, E., Buonocore, F., Nitti, G. and Giardina, P. 1991. Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim. Biophys. Acta. 1073:114-119 https://doi.org/10.1016/0304-4165(91)90190-R
  30. Tien, M. and Kirk, T. K. 1988. Lignin peroxidase of Phanerochaete hrysosporium. Methods Enzymol. 161:238-249 https://doi.org/10.1016/0076-6879(88)61025-1
  31. Tuor, U., Winterhalter, K. and Fiechter, A. 1995. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J. Biotechnol. 41:1-17 https://doi.org/10.1016/0168-1656(95)00042-O

Cited by

  1. Mushroom as a product and their role in mycoremediation vol.4, pp.1, 2014, https://doi.org/10.1186/s13568-014-0029-8