The Effect Analysis of One-side Walking Behavior Using MDPM(Multi-directional Pedestrian Model)

다방향보행자모형(MDPM)을 이용한 편측보행 효과분석

  • 이준 (한국교통연구원) ;
  • 조한선 (한국교통연구원) ;
  • 현경 (연세대학교 도시공학과) ;
  • 정진혁 (연세대학교 공과대학 도시공학과)
  • Published : 2009.10.30

Abstract

Network models for pedestrian flows have been studied in various ways. However, because of the simplicity and application, a number of researchers prefer the CA Model to analyze pedestrian's complicated behavior. These kinds of models based on Agent are being used as a microscopic analyzing method since it can easily adapt individuals' various characters and movement types. However, because pedestrians' movement can be (easily) effected by where they are and where they head, some models using the same rules have limit when considering pedestrians' every different movement. In this research, homogeneous section is defined as a similar movement type of individuals. With MDPM, we suggest simulation method explaining one-way walk and side-walk which could not be done in past.

보행교통류의 네트워크 모형은 다양한 방법으로 연구되고 있지만 특히 그 적용성과 간결성 때문에 셀 기반의 CA 모형을 이용한 분석이 다수 진행되고 있다. 최근에는 CA 모형의 후속모형으로 제시된 가스입자(Gas Lattice)모형은 확산(dissemination)하는 물질의 행태를 편이된 임의보행(Biased Random Walker)으로 반영하여 보행자의 움직임을 가정하기도 하였다. 이와 같은 모형들은 Agent 기반으로 보행자의 다양한 특성과 보행행태를 쉽게 적용할 수 있기 때문에 복잡하고 영향요소가 많은 보행을 설명하는데 미시적인(microscopic) 분석방법론으로 활용되고 있다. 하지만 보행의 행태는 보행자의 목적지와 위치에 따라 쉽게 변할 수 있기 때문에 동일한 규칙으로의 설명되는 모형들은 보행자의 행태를 반영하는데 한계를 가지고 있다. 본 연구에서는 보행자의 행태가 유사한 동질구간(Homogeneous Section)을 정의하고 다방향보행자모형(MDPM: Multi-Directional Pedestrian Model)을 이용하여 현재까지 적용 및 평가되지 못하였던 임의보행과 좌/우측 통행 보행자의 보행특성을 설명할 수 있는 시뮬레이션 방법론을 제시하였다.

Keywords

References

  1. T. Jin and T. Yamada, "Irritating effects of fire smoke on visibility," Fire Science and Technology, vol. 5, no. 1, pp. 79-80, 1985. https://doi.org/10.3210/fst.5.79
  2. T. Jin, "Studies on human behavior and tenability in fire smoke," Proc. Int. Symp., pp. 3-21, 1997.
  3. T. Jin, Visibility Through Fire Smoke, Report of the Fire Institute of Japan, no. 42, 1976.
  4. H. Muir, C. Marrison, and A. Evans, "Aircraft evacuation: The effect of passenger motivation and cabin configuration adjacent to the exit," Civil Aviation Authority Paper 89019, 1996.
  5. S. Gwynne, E. R. Galea, M. Owen, and P. J.Lawrence, "An investigation of the aspects ofoccupant behaviour required for evacuation modelling," J. Applied Fire Science, vol. 8, pp.19-59, 1998.
  6. R. Futian, Psychology of Traffic Engineering, Beijing University of Technology Publishing House, pp. 201-204, 1993.
  7. G. Ho, C. T. Scialfa, J. K. Caird, and T. Graw, "Visual search for traffic signs: The effects of clutter, luminance, and aging," Human Factors,vol. 43, pp. 194-207, 2001. https://doi.org/10.1518/001872001775900922
  8. Y. Guoli, Application of Eye Move Analysis Method, Psychological Research, Tianjin Education Publishing Houses, pp. 340-355, 2004.
  9. J. J. Tecce, Psychology: Physiology and Experimental,McGraw-Hill Yearbook of Science and Technology, New York, McGraw-Hill, pp. 375-377,1992.
  10. S. P. Hoogendoorn and P. H. L. Bovy,"Simulation of pedestrian flows by optimal control and differential games," Optimal Control Applications and Methods, vol. 24, pp. 153-172, 2003. https://doi.org/10.1002/oca.727
  11. S. P. Hoogendoorn and W. Daamen, "Pedestrian behavior at bottleneck," Transportation Science, vol. 39, pp. 147-159, May 2005. https://doi.org/10.1287/trsc.1040.0102
  12. D. Helbing, J. J. Farkas, and T. Vicsek, "Simulating dynamical features of escape panic," Nature, vol. 407, pp. 487-490, Sept. 2000. https://doi.org/10.1038/35035023
  13. S. P. Hoogendoorn, W. Daamen, and R. Landman, Microscopic calibration and validation of pedestrianmodels-cross-conparison of models using experimental data, Transport & Planning Department,Delft University of Technology, 2004.
  14. M. Muramatsu, T. Irie, and T. Nagatani, "Jamming transition in pedestrian counter flow," Physica A : Statistical Mechanics And Its Applications, vol. 267, pp. 487-498, 1999. https://doi.org/10.1016/S0378-4371(99)00018-7
  15. S. Maniccam, "Traffic jamming on hexagonal lattice," Physica A, vol. 321, pp. 653-664, Apr.2003. https://doi.org/10.1016/S0378-4371(02)01549-2
  16. 이준, 허민국, 정진혁, "보행교통류를 위한 회전육각격자모형 개발," 대한교통학회지, 제27권,제1호, pp. 169-177, 2009. 2.
  17. V. J. Blue and J. L. Adler, "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B, vol. 35, pp. 293-312, Mar. 2001. https://doi.org/10.1016/S0191-2615(99)00052-1
  18. K. Teknomo, Microscopic Pedestrian Flow Characteristics: Development of an Image Processing Data Collection and Simulation Model, Ph. D. Dissertation, Tohoku University, 2002.
  19. K. Teknomo, Y. Takeyama, and H. Inamura"Microscopic pedestrian simulation model to evaluate 'lane-like segregation' of pedestrian crossing," Proc. Infrastructure Planning Conf., vol. 24, pp. 1-5, Nov 2001.
  20. D. Helbing and P. Molnar, "Social force model for pedestrian dynamics," Physical Review, vol. 51, pp. 4282-4286, Jan. 1995.
  21. M. Asano, A. Sumalee, M. Kuwahara, and S.Tanaka, "Dynamic cell transmission-based pedestrian model with multidirectional flows and strategic route choices," Transportation Research Board, vol. 2039, pp. 42-49, 2007.
  22. D. Helbing, "A fluid dynamic model for the movement of pedestrians," Complex Systems, vol. 6, pp. 391-415, 1992.
  23. D. Helbing and P. Molnar, "Self-organization phenomena in pedestrian crowds," Self-Organization of Complex Structure, pp. 569-577, 1997.
  24. G. C. Lovas, "Modeling and simulation of pedestrian traffic flow," Transportation Research B, vol. 28,no. 6, pp. 429-443, Dec. 1994. https://doi.org/10.1016/0191-2615(94)90013-2
  25. M. Masakuni, I. Tunemasa, and N. Takashi,"Jamming transition in pedestrian counter flow," Physica A, vol. 267, pp. 487-498, Jan. 1999. https://doi.org/10.1016/S0378-4371(99)00018-7
  26. 이준, 박일섭, 정진혁, "CA기반의 다방향 보행자 시뮬레이션 모형개발," 대한교통학회 학술발표회논문집, pp. 502-507, 2009. 2.
  27. 이준, 허민국, 정진혁, "정방격자모델을 이용한 양방향 보행 교통류의 특성연구," 대한교통학회학술발표회논문집, pp. 977-985, 2008. 10.