DOI QR코드

DOI QR Code

Characterization of Bacillus luciferensis Strain KJ2C12 from Pepper Root, a Biocontrol Agent of Phytophthora Blight of Pepper

  • Kim, Hye-Sook (Laboratory of Plant Disease and Biocontrol, College of Lift Sciences and Biotechnology, Korea University) ;
  • Sang, Mee-Kyung (Laboratory of Plant Disease and Biocontrol, College of Lift Sciences and Biotechnology, Korea University) ;
  • Myung, Inn-Shik (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Chun, Se-Chul (Department of Molecular Biotechnology, Konkuk University) ;
  • Kim, Ki-Deok (Laboratory of Plant Disease and Biocontrol, College of Lift Sciences and Biotechnology, Korea University)
  • Published : 2009.03.31

Abstract

In this study, we characterized the bacterial strain KJ2C12 in relation with its biocontrol activity against Phytophthora capsici on pepper, and identified this strain using morphological, physiological, biochemical, fatty acid methyl ester, and 16S rRNA gene sequence analyses. Strain KJ2C12 significantly (P=0.05) reduced both final disease severity and areas under the disease progress curves of 5-week-old pepper plants inoculated with P. capsici compared to buffer-treated controls. As for the production of antibiotics, biofilms, biosurfactant, extracellular enzyme, HCN, and swarming activity, strain KJ2C12 produced an extracellular enzyme with protease activity, but no other productions or swarming activity. However, Escherichia coli produced weak biofilm only. Strain KJ2C12 could colonize pepper roots more effectively in a gnotobiotic system using sterile quartz sand compared to E. coli over 4 weeks after treatments. However, no bacterial populations were detected in 10 mM $MgSO_4$ buffer-treated controls. Strain KJ2C12 produced significantly higher microbial activity than the $MgSO_4$-treated control or E. coli over 4 weeks after treatments. Bacterial strain KJ2C12 was identified as Bacillus luciferensis based on morphological, physiological, and biochemical characteristics as well as FAME and 16S rRNA gene sequence analyses. In addition, these results suggested that B. luciferensis strain KJ2C12 could reduce Phytophthora blight of pepper by protecting infection courts through enhanced effective root colonization with protease production and an increase of soil microbial activity.

Keywords

References

  1. Ball, R. J. and Sellers, W. 1966. Improved motility medium. Applied Microbiology 14:670-673
  2. Bodour, A. A. and Miller-Maier, R. M. 1998. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbial. Methods 32:273-280 https://doi.org/10.1016/S0167-7012(98)00031-1
  3. Boer, W., Gunnewiek, P. J. A. K., Lafeber, P., Janse, J. D., Spit, B. E. and Woldendorp, J. W. 1998. Anti-fimgal properties of chitinolytic dune soil bacteria. Soil BioI. Biochem. 30: 193-203 https://doi.org/10.1016/S0038-0717(97)00100-4
  4. Caesar, A. J. and Burr, T. J. 1987. Growth promotion of apple seedlings and rootstocks by specific strains of bacteria. Phytopathology 77:1583-1588 https://doi.org/10.1094/Phyto-77-1583
  5. Castric, K. F. and Castric, P. A. 1983. Method for rapid detection of cyanogenic bacteria. Appl. Environ. Microbiol. 45 :701-702
  6. Chang, S. H., Lee, J. Y., Kim, K. D. and Hwang, B. K. 2000. Screening for in vitro antifimgal activity of soil bacteria against plant pathogens. Mycobiology 28: 190-192
  7. Demoz, B. T. and Korsten, L. 2006. Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol. Control 3 :68-74 https://doi.org/10.1016/j.biocontrol.2005.11.010
  8. Elad, Y. and Chet, L 1987. Possible role of competition for nutrients in biocontrol ofPythium damping-off by bacteria. Phytopathology 77: 190-195 https://doi.org/10.1094/Phyto-77-190
  9. Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  10. Fritze, D. 2004. Taxonomy of the genus Bacillus and related genera: The aerobic endospore-forming bacteria. Phytopathology 94:1245-1248 https://doi.org/10.1094/PHYTO.2004.94.11.1245
  11. Gerhardt, P. 1994. Methods for general and molecular bacteriology, 2nd ed. American Society for Microbiology. Washington D.C., USA, 791pp
  12. Han, J., Sun, L., Dong, X., Cai, Z., Sun, X., Yang, H., Wang, Y. and Song, W. 2005. Characterization of a novel plant growthpromoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol. 28:66-76 https://doi.org/10.1016/j.syapm.2004.09.003
  13. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869 https://doi.org/10.1105/tpc.8.10.1855
  14. Hoffiand, E., Findenegg, GR. and Nelemans, J. A. 1989. Solubilization of rock phosphate by rape. Plant Soil 113:155-160 https://doi.org/10.1007/BF02280175
  15. Idris, H. A., Labuschagne, N. and Korsten, L. 2008. Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. BioI. Control. 45:72-84 https://doi.org/10.1016/j.biocontrol.2007.11.004
  16. Jaroszuk-Sciset, J., Kurek, E., Winiarczyk, K., Baturo, A. and fukanowski, A. 2008. Colonization of root tissues and protection against Fusarium wilt of rye (Secale cereale) by nonpathogenic rhizosphere strains of Fusarium cufmorum. BioI. Control 45:297-307 https://doi.org/10.1016/j.biocontrol.2008.03.007
  17. Kamilova, F., Validov, S., Azarova, T., Mulders, J. and Lugtenberg, B. 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbial. 7: 1809-1817 https://doi.org/10.1111/j.1462-2920.2005.00889.x
  18. Kildea, S., Ransbotyn, v., Khan, M. R., Fagan, B., Leonard, G, Mullins, E. and Doohan, F. M. 2008. Bacillus megaterium shows potential for the biocontrol of septoria tritici blotch of wheat. Biol. Control. 47:37-45 https://doi.org/10.1016/j.biocontrol.2008.07.001
  19. Kim, H. S., Sang, M. K., Jeun, Y. c., Hwang, B. K. and Kim, K. D. 2008. Sequential selection and efficacy of antagonistic rhizobactcria for controlling Phytophthora blight of pepper. Crop Prot. 27:436-443 https://doi.org/10.1016/j.cropro.2007.07.013
  20. Kim, Y S., Jang, B., Chung, I.-M., Sang, M. K., Ku, H.-M., Kim, K. D. and Chun, S.-C. 2008. Enhancement ofbiocontrol activity of antagonistic ChryseobacteriulIl strain KJI R5 by adding carbon sources against Phytophthora capsici. Plant Pathol. J. 24:164-170 https://doi.org/10.5423/PPJ.2008.24.2.164
  21. Kohler. T, Curty, L. K., Barja, F., Delden, C. and Pechere, J. C. 2000. Swanning of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol. 182:5990-5996 https://doi.org/10.1128/JB.182.21.5990-5996.2000
  22. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163 https://doi.org/10.1093/bib/5.2.150
  23. Landa, B. B., Mavrodi, D. M., Thomashow, L. S. and Weller, D. M. 2003. Interactions between strains of 2,4-diacetylphloroglucinol- producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology 93:982-994 https://doi.org/10.1094/PHYTO.2003.93.8.982
  24. Lee, J. Y, Kim, H. S., Kim, K. D. and Hwang, B. K. 2004.In vitro anti-oomycete activity and in vivo control efficacy of phenylacetic acid against Phytophthora capsici. Plant Pathol. J 20:177-183 https://doi.org/10.5423/PPJ.2004.20.3.177
  25. Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C K. and Lee, G W. 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol. Biotechnol. 24: 1139-1145 https://doi.org/10.1007/s11274-007-9585-2
  26. McSpadden Gardener, B. B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252-1258 https://doi.org/10.1094/PHYTO.2004.94.11.1252
  27. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile wcapons for plant disea~e biocontrol. Trends. Microbiol. 16:115-125 https://doi.org/10.1016/j.tim.2007.12.009
  28. O'Toole, G A, Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. and Kolter, R. 1999. Genetic approaches to study ofbiofilms. Methods Enzymol. 310:91-109 https://doi.org/10.1016/S0076-6879(99)10008-9
  29. Reva, O. N., Dixelius, C, Meijer, J. and Priest, F. G 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 48:249-259 https://doi.org/10.1016/j.femsec.2004.02.003
  30. Ristaino, J. B. and Johnston, S. A 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 83: 1080-1089 https://doi.org/10.1094/PDIS.1999.83.12.1080
  31. Sang, M. K., Chiang, M. H., Yi, E. S., Park, K. W. and Kim, K. D. 2006. Biocontrol of Korean ginseng root rot caused by Phytophthora cacforum using antagonistic bacterial strains ISE 13 and KJ 1 R5. Plant Palllol. J 22: 103-106
  32. Sang, M. K., Chun, S.-C. and Kim, K. D. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Control 46:424-433 https://doi.org/10.1016/j.biocontrol.2008.03.017
  33. SAS Institute. 1988. SAS/STAT user's guide; release 6.03. SAS Institute, Cary, NC, USA
  34. Schisler, D. A, Slininger, P. J., Behle, R. W. and Jackson, M. A 2004. Formulation of Bacilllls spp. for biological control of plant diseases. Phytopathology 94: 1267-1271 https://doi.org/10.1094/PHYTO.2004.94.11.1267
  35. Schmidt, C. S., Agostini, F., Leitert, C, Killham, K. and Mullins, C. E. 2004. Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathology 94:351-363 https://doi.org/10.1094/PHYTO.2004.94.4.351
  36. SchnUrer, J. and Rosswall, T 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 43:1256-1261
  37. Shaner, G and Finney, R. E. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67: 1051-1056
  38. Simons, M., Bij, A. J., Brand, I., Weger, L. A, Wijffelman, C. A and Lugtenberg, B. J. J. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9:600-607 https://doi.org/10.1094/MPMI-9-0600
  39. Stead, D. E., 1989. Grouping of Xanthomonas campestris pathovars of cereals and grassed by fatty acid profiling. EPPO Bulletin 19:57-68 https://doi.org/10.1111/j.1365-2338.1989.tb00129.x
  40. Tombolini, R., Gaag, D. J., Gerhardson, B. and Jansson, J. K. 1999. Colonization pattern ofthe biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein. Appl. Environ. Microbiol. 65:3674-3680
  41. Vries, W. and Stouthamer, A M. 1968. Fermentation of glucose, lactose, galactose. mannitol, and xylose by Bifidobacteria. J Bacteriol. 96:472-478
  42. Weisburg, W. G, Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 173 :697-703 https://doi.org/10.1128/jb.173.2.697-703.1991
  43. Williams, S. T., Sharpe, M. E., Holt, J. G, Murray, R. G. E., Brenner, D. J., Krieg, N. R., Moulder, J. w., Pfelmig, N., Sneath, P. H. A. and Staley, J. T 1989. Bergey's Manual of Systematic Bacteriology, Vol. 4., Williams & Willkins, Co., Baltimore, USA, 2648pp
  44. Yamaguchi, S., Jeenes, D. J. and Archer, D. B. 2001. Proteinglutaminase trom CllIyseobacterium proteolyticum, an enzyme that deamidates glutaminyl residues in proteins purification, characterization and gene cloning. Eur. J. Biochem. 268: 1410-1421 https://doi.org/10.1046/j.1432-1327.2001.02019.x
  45. Yoshida, S., Hiradate, S., Tsukamoto, T, Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91 : 181-187 https://doi.org/10.1094/PHYTO.2001.91.2.181
  46. Yuen, G Y. and Schroth, M. N. 1986. Interactions of Pseudomonasfluorescens strain E6 with ornamental plants and its effect on the composition of root-colonizing microflora. Phytopathology 76: 176-180 https://doi.org/10.1094/Phyto-76-176

Cited by

  1. Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora Blight on Hot Pepper vol.17, pp.2, 2011, https://doi.org/10.5423/RPD.2011.17.2.121
  2. Plant growth-promoting rhizobacteria suppressive to Phytophthora blight affect microbial activities and communities in the rhizosphere of pepper (Capsicum annuum L.) in the field vol.62, 2012, https://doi.org/10.1016/j.apsoil.2012.08.001
  3. Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and other fungi predominant on market onion in Korea vol.65, 2014, https://doi.org/10.1016/j.cropro.2014.07.016
  4. Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea vol.104, 2017, https://doi.org/10.1016/j.biocontrol.2016.10.011
  5. Microbe-mediated control of Aspergillus flavus in stored rice grains with a focus on aflatoxin inhibition and biodegradation 2017, https://doi.org/10.1111/aab.12381
  6. Biocontrol activity and root colonization by Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper vol.59, pp.4, 2014, https://doi.org/10.1007/s10526-014-9584-9
  7. Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90–166 is through both auxin-dependent and -independent signaling pathways vol.29, pp.3, 2010, https://doi.org/10.1007/s10059-010-0032-0
  8. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper vol.113, pp.2, 2012, https://doi.org/10.1111/j.1365-2672.2012.05330.x
  9. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper vol.32, 2012, https://doi.org/10.1016/j.cropro.2011.10.018
  10. sp. strain ISE14 that suppresses Phytophthora blight vol.172, pp.2, 2018, https://doi.org/10.1111/aab.12413