Experimental Study on the Designed Ventilation System Performance at Rescue Station in Tunnel Fire

터널 내 화재발생시 구난역 내의 설계된 환기 시스템 성능에 대한 실험적 연구

  • Published : 2009.02.28

Abstract

In this study, the l/35 reduced-scale model experiment were conducted to investigate designed ventilation system performance at rescue station in tunnel fire. A model tunnel with 2 mm thick of steel, 10 m long, 0.19 m high and 0.26m was made by using Froude number scaling law. The cross-passages installing escape door at the center. were connected between accident tunnel and rescue tunnel. The n-heptane pool fire, $4cm\times4cm$, with heat release rate 698.97W were used as fire source. The fire source was located in the center and portal of accident tunnel as Worst case.. An operating ventilation system extracted smoke amount of 0.015 cms. The smoke temperature and carbon monoxide. concentration in cross-passage were measured to verify designed ventilation system. The results showed that, in center fire case without ventilation in accident tunnel, smoke did not propagated to rescue station. In portal tire case, smoke spreaded to rescue station without ventilation. But smoke did not propagated to rescue station with designed ventilation.

본 연구는 축소실험을 통하여 터널내 화재발생시 구난역 내 설계된 환기 시스템 성능을 검증 하였다. Froude 수 상사법칙을 적용하여 실제 터널 크기의 1/35로 축소된 모형터널을 사용하였다. 모형터널은 두께가 2mm인 철을 사용하여 총 길이 10m, 높이 0.19m, 폭 0.26m으로 제작되었다. Cross-passage는 사고터널과 구난 터널 사이에 연결되고 Cross-passage 중앙에는 방화문이 설치되어 있다. 실험에는 n-heptane, $4cm{\times}4cm$ 풀화재를 이용하였다. 화원의 발열량은 695.97W이고, 화원 위치는 터널 중앙과 가장 위험한 경우로써 터널 입구지점에 각각 설치하였다. 환기조건은 0.015cms이고 화원과 가장 인접한 곳에서만 배기하도록 하였다. 구난역 배기 성능을 검증하기 위해 온도와 CO농도를 측정하여 연기의 유무를 파악하였다. 본 실험의 결과는 다음과 같다. 첫째, 터널 중앙화원인 경우 환기가 없어도 구난 터널에 연기가 검출되지 않았다. 둘째, 구난역 입구 부근에 화원을 설치한 경우 환기 조건을 주지 않으면 연기가 구난 터널로 침투하지만, 설계된 배기 조건시 연기는 구난터널로 전파하지 않았다.

Keywords

References

  1. Fathi Tarada. Rudolf Bopp. Samuel Nyfeler. Kwang-Soo legal. Deng-Sn Kim. "Ventilati0n and Risk Control of the Young Dong Rail Tunnel in Korea", The First lntemational Conference on Major Tunnel and Infrastructure Projects, 22-24 May 2000, Taipei. Taiwan
  2. C Rudin. "Fires in long railway tum1els—the ventilation concepts adopted in the AlpTransit pr0jects", 10th lntemational Sym-posium on Aerodynamics and Ventilation of Vehicle Tunnels. Boston. November 2000
  3. Michitsugu lkuma. "Maintenance of the undersea section of the Seikan Tunnel", Tunnelling and Underground Space Techno-logy. 20, 143-149, 2005 https://doi.org/10.1016/j.tust.2003.10.001
  4. J. G. Quintiere. "Principles of hre behavior", New york. Delamer Publishers,1988
  5. Richard L. P. Custer. "Smoke Management in Coverd Malls and Atria". Section 4. Chapter 13, SFPE Handbook of Fire Protec-tion Engineering. NFPA. Quincy MA, 2002
  6. G. Quintierc., "Scaling Application in Fire Research", Fire Safety Joumal, Vo1.15 pp 3-29, 1989
  7. 7. Zhou, X.C. and Gore, J,P., "Air Entrainment Flow Field Induced by a Pool Fire". Combustion and Flarne, Vol. 100, No 1, pp 52-60. 1995 https://doi.org/10.1016/0010-2180(94)00043-R
  8. O. Megret, O. Vauquelin, "A model to evaluate tunnel fire characteristics", Fire Safety Joumal 34, pp 393-401, 2000 https://doi.org/10.1016/S0379-7112(00)00010-2
  9. O. Vauquelin, D. Telle, "Definition and Experimental evaluation of the smoke " confinement velocity in tunnel fires", Fire Safety Journal, 40, pp. 320-330, 2005 https://doi.org/10.1016/j.firesaf.2005.02.004
  10. Kim D. H.,Park W. H., "Experiment by Using Reduced Scale Models for the Fire Sagety of a Rescue Station in Very Long Rail Tunnel in Korea", Tunnelling and Underground Space Technology, Vol. 21, no. 3-4, 2006, pp. 303 https://doi.org/10.1016/j.tust.2005.12.159
  11. GS건설 기술연구소, "철도터널 방재시스템 연구보고서", 2008