References
- Callaway, T. R. and S. A. Martin. 1996. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 74:1982-1989
- Carro, M. D., S. Lopez, C. Valdes and F. J. Overjero. 1999. Effect of DL-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Anim. Feed Sci. Tec. 79:279-288 https://doi.org/10.1016/S0377-8401(99)00034-6
- Carro, M. D. and M. J. Ranilla. 2003. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br. J. Nutr. 89:181-188 https://doi.org/10.1079/BJN2002759
- Castillo, C., J. L. Benedito, J. Mendez, V. Pereira, M. Lopez-Alonso, M. Miranda and J. Hernandez. 2004. Organic acids as a substitute for monensin in diets for beef cattle. Anim. Feed Sci. Tec. 115:101-116 https://doi.org/10.1016/j.anifeedsci.2004.02.001
- Chen, M. and M. J. Wolin. 1979. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol. 38:72-77 https://doi.org/10.1128/AEM.00694-06
- Demeye, D. I. and H. K. Henderickx. 1967. Competitive inhibition of in vitro methane production by mixed rumen bacteria. Arch. Int. Physiol. Biochim. 75:157-159
- Demeyer, D. I. and V. Fievez. 2000. Ruminants and environment: methanogenesis. Ann. Zootech. 49:95-112 https://doi.org/10.1051/animres:2000110
- Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13:156-163 https://doi.org/10.1136/jcp.13.2.156
- Garcı'a-Lo'pez, P. M., L. Kung and J. M. Odom. 1996. In vitro inhibition of microbial methane production by 9,10-anthraquinone. J. Anim. Sci. 74:2276-2284
- Hino, T. 1981. Action of monensin on rumen protozoa. Anim. Sci. Technol. 53:171-179
- Kung, L. J., K. A. Smith, A. M. Smagala, K. M. Endres, C. A. Bessett, N. K. Ranjit and J. Yaissle. 2003. Effects of 9,10 anthraquinone on ruminal fermentation, total-tract digestion, and blood metabolite concentrations in sheep. J. Anim. Sci. 81:323-328
- L'opez, C., C. Vald´es, C. J. Newbold and R. J. Wallace. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81:59-64
- Makkar, H. P. S. and P. E. Vercoe. 2007. Measuring methane production from ruminants (Ed. P. Harinder, S. Makkar and Philip E. Vercoe). Springer publishing Company
- Martin, S. A. and M. N. Streeter. 1995. Effect of malate on in vitro mixed ruminal microorganism fermentation. J. Anim. Sci. 73:2141-2145 https://doi.org/10.1016/S0377-8401(99)00034-6
- Martin, S. A. and C. M. Park. 1996. Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium Selenomonas ruminantium. Curr. Microbiol. 32:327-331 https://doi.org/10.1007/s002849900058
- Miller, T. L. and M. J. Wolin. 2001. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J Dairy Sci. 84:1445-1448 https://doi.org/10.3168/jds.S0022-0302(01)70177-4
- Nisbet, D. J. and S. A. Martin. 1990. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl. Environ. Microbiol. 56:3515-3518
- Nisbet, D. J. and S. A. Martin. 1993. Effects of fumarate, L-malate, and an Aspergillus oryzae fermentation extract on D-lactate utilization by the ruminal bacterium Selenomonas ruminantium. Curr. Microbiol. 26:133-136 https://doi.org/10.1007/BF01577366
- Takahashi, J. 2001. Nutritional manipulation of methanogenesis in ruminants. Asian-Aust. J. Anim. Sci. 14:131-135
- Ungerfeld, E. M., S. R. Rust and R. Burnett. 2003a. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod. Nutr. Dev. 43:189-202 https://doi.org/10.1051/rnd:2003016
- Ungerfeld, E. M., S. R. Rust and R. Burnett. 2003b. Attempts to inhibit ruminal methanogenesis by blocking pyruvate oxidative decarboxylation. Can. J. Microbiol. 49:650-654 https://doi.org/10.1139/w03-079
- Van Nevel, C. J. and D. I. Demeyer. 1996. Control of rumen methanogenesis. Environ. Monit. Assess 42:73-97 https://doi.org/10.1007/BF00394043
- Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fibre, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Wolin, M. J. and T. L. Miller. 1988. Microbe-microbe Interactions. Elsevier, London, pp. 343-359
Cited by
- Rumen microbial response in production of CLA and methane to safflower oil in association with fish oil or/and fumarate vol.82, pp.3, 2011, https://doi.org/10.1111/j.1740-0929.2010.00857.x
- Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages vol.33, pp.3, 2013, https://doi.org/10.5333/KGFS.2013.33.3.197
- Effects of Defaunation on Fermentation Characteristics, Degradation of Ryegrass Hay and Methane Production by Rumen Microbes In Vitro When Incubated with Plant Oils vol.34, pp.3, 2014, https://doi.org/10.5333/KGFS.2014.34.3.193
- Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate vol.86, pp.8, 2015, https://doi.org/10.1111/asj.12354
- Dietary linseed oil with or without malate increases conjugated linoleic acid and oleic acid in milk fat and lipoprotein lipase and stearoyl-coenzyme A desaturase gene expression in mammary gland and milk somatic cells of lactating goats vol.94, pp.8, 2016, https://doi.org/10.2527/jas.2016-0291
- Linolenic Acid in Association with Malate or Fumarate Increased CLA Production and Reduced Methane Generation by Rumen Microbes vol.22, pp.6, 2009, https://doi.org/10.5713/ajas.2009.80682
- Control of Methane Emission in Ruminants and Industrial Application of Biogas from Livestock Manure in Korea vol.24, pp.1, 2011, https://doi.org/10.5713/ajas.2011.r.02
- Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions vol.11, pp.None, 2009, https://doi.org/10.3389/fmicb.2020.00589
- Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate vol.9, pp.8, 2009, https://doi.org/10.3390/microorganisms9081717