DOI QR코드

DOI QR Code

The measurement of dicamba in soil and plants

토양 및 식물 중 디캄바 측정법에 대한 연구

  • Shin, Ho-Sang (Department of Environmental Education, Drug Abuse Research Center, Kongju National University)
  • 신호상 (공주대학교, 환경교육과, 약물남용연구소)
  • Received : 2009.10.16
  • Accepted : 2009.11.02
  • Published : 2009.12.25

Abstract

The herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) in soil and plants was determined by gas chromatography-mass spectrometry (GC/MS). The samples were extracted with diethyl ether at pH 2, and washed with 0.1 N HCl, and then dried. The dried residue was derivatized in 1 mL of 10% $H_2SO_4$-MeOH for 2 hr at $80^{\circ}C$. The reaction mixture was neutralized with 4 mL of sodium bicarbonate solution and reextracted with 5 mL of diethyl ether. After the extract was concentrated, dicamba was determined by GC/MS-SIM mode. There was good linearity above 0.999 in the ranges of the $1.0{\sim}100{\mu}g/kg$. Total 42 sample including 32 soil samples and 10 plants samples were analyzed by developed method. Dicamba was detected in the concentration range of $2.9-123.9{\mu}g/kg$ in 15 samples among 32 soil samples and in the concentration range of $43-33,252{\mu}g/kg$ in 5 samples among 10 plants samples. A cause of the wither and die of the pine trees is suspected to spray dicamba around or directly to them.

토양 및 식물 중 잔류하는 제초제 디캄바를 기체크로마토그래피-질량검출법으로 측정하는 방법을 개발하였다. 토양 또는 식물 시료를 pH 2로 조절한 후 diethyl ether로 추출한 다음 0.1 N HCl로 정제한 후 증발 건조시켰다. 잔류물에 10% 황산 메탄올 용액 1 mL를 가한 후 $80^{\circ}C$에서 2 시간 반응시켰다. 반응 후 탄산수소소듐 포화용액 4 mL를 서서히 가하여 중화시킨 후 diethyl ether 5 mL로 재 추출 한 다음 추출액을 농축시켜 GC/MS에 주입하여 분석하였다. 그 결과 $1.0{\sim}100{\mu}g/kg$의 정량구간 내에서 $R^2$=0.999 이상의 좋은 직선성을 보였다. 분석결과 총 32개 토양 시료 중 15개 토양에서 디캄바가 $2.9-123.9{\mu}g/kg$의 농도범위로 검출되었다. 한편 식물에서는 총 10개의 시료 중 5 개 시료에서 디캄바가 $43-33,252{\mu}g/kg$의 농도범위로 검출되었다. 따라서 소나무가 고사한 이유는 디캄바를 직접 나무에 또는 주변에 뿌렸기 때문으로 판단된다.

Keywords

References

  1. C. Cox, J. Pestic. Reform. 14, 30-35(1994)
  2. F. S. Crosswhite, W. R. Feldman and E. W. Minch, Impact of herbicides on cacti. Desert Plants, 11, 9-31(1995)
  3. M. Vink and J. M. van der Poll, J. Chromatogr. A, 733, 361-366(1996) https://doi.org/10.1016/0021-9673(95)00997-3
  4. J. A. Field and K. Monohan, J. Chromatogr. A, 741, 85-90(1996) https://doi.org/10.1016/0021-9673(96)00148-3
  5. M. K. Hong, M. C. Kim and A. E. Smith, J. AOAC Int., 79, 998-1004(1996)
  6. E. M. Thurman, L. R. Zimmerman and D. S. Aga, Int. J. Environ. Anal. Chem., 79, 185-198(2001) https://doi.org/10.1080/03067310108044398
  7. J. C. Van Damme and M. Galoux, J. Chromatogr. 190. 401-410(1980) https://doi.org/10.1016/S0021-9673(00)88245-X
  8. A. J. Krzyszowska and G. F. Vance, J. Agric. Food Chem., 42, 1693(1994) https://doi.org/10.1021/jf00044a020
  9. A. M. Fogarty, S. J. Traina and O. H. Tuovinen, J. Liq. Chromatogr., 17 2667-2674(1994) https://doi.org/10.1080/10826079408013406
  10. V. M. A. Hakkinen, K. Grob and C. Burki, J. Chromatogr., 473, 353-358(1989) https://doi.org/10.1016/S0021-9673(00)91319-0
  11. N. D. Gangal, S. S. Bondre and P. S. Ramanathan, J. Chromatogr. A, 884, 243-249(2000) https://doi.org/10.1016/S0021-9673(00)00305-8
  12. T. Henriksen, B. Svensmark, B. Lindhardt and R. K. Juhler, Chemosphere, 44, 1531-1539(2001) https://doi.org/10.1016/S0045-6535(00)00532-4
  13. K. V. Penmetsa, R. B. Leidy and D. Shea, J. Chromatogr. A, 745, 201-208(1996) https://doi.org/10.1016/0021-9673(96)00185-9
  14. H. Liu, J. Song, P. Han, J. Sep. Sci., 29,1038-1044(2006) https://doi.org/10.1002/jssc.200500373