Characteristics on the Incubation of Sulfur Compound-Oxidizing Strains Separated for the Removal of Malodor

악취제거를 위하여 분리한 황화합물 산화균주의 배양특성

  • Lim, Dong Joon (School of Display & Chemical Engineering, Yeungnam University) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University)
  • 임동준 (영남대학교 디스플레이화학공학부) ;
  • 임광희 (대구대학교 화학공학과)
  • Received : 2009.10.27
  • Accepted : 2009.11.10
  • Published : 2009.12.31

Abstract

Both strains of KD-1212 and DAH-1056 were isolated and identified from animal manure-contaminated soil by screening bacterial strains for the removal of sulfur compound-malodor with such substrate as sodium thiosulfate or free sulfur. Then the characteristics on the incubation of these microbes were observed under various incubating-condition such as pH, temperature, aerobic or anaerobic, substrate(sulfur compound) concentration, nitrogen and carbon source and rotating speed for mixing, and the optimum incubating condition was established. The optimum pHs of KD-1212 and DAH-1056 were 7.0 and 4.0, respectively, and their optimum temperatures were in the range of $30{\sim}35^{\circ}C$. Another autotrophic strain, ED-1138, was isolated from contaminated soil. The strain DAH-1056 excelled a strain Thiobacillus sp. IW in eliminating hydrogen sulfide during the process of malodor-biofiltration with a fixed strain. The characteristics on the incubation of strain KD-1212 were observed under various substrate-concentrations, nitrogen and carbon sources. KD-1212 favored glucose and maltose, and yeast extract as carbon sources and nitrogen source, respectively. The optimum concentrations of substrate and nitrogen source were 25 mM of sodium thiosulfate and 0.5% yeast extract, respectively for the growth of strain KD-1212.

황화수소 및 메틸머캡탄($CH_3SH$) 또는 DMS($CH_3SCH_3$)와 같은 황화합물들의 악취를 효율적으로 처리하기 위하여 축분으로 오염된 토양으로부터 sodium thiosulfate 또는 유리황과 같은 기질을 이용하여 미생물의 분리 및 동정을 하고 분리된 미생물들의 여러 가지 pH, 배양온도, 산소조건, 기질(황화합물) 농도, 질소원 및 탄소원의 농도 및 배양기 교반속도 등의 배양조건 하에서의 배양특성을 관찰하고 적정배양조건을 구축하였다. KD-1212와 DAH-1056 균주의 최적 pH는 각각 7.0 및 4.0이었으며 최적배양온도는 $30{\sim}35^{\circ}C$ 범위였다. 또한 독립영양미생물인 ED-1138 균주를 다른 오염된 토양에서 분리하였다. 균주를 고정한 바이오필터의 악취처리에 있어서 균주 DAH-1056이 기존 균주 Thiobacillus sp. IW보다 황화수소 제거능이 우수하였다. KD-1212 균주를 이용하여 황화합물의 농도 및 질소원 및 탄소원에 대한 성장특성을 조사한 결과, KD-1212는 sodium thiosulfate의 25 mM 농도에서 성장이 가장 잘되었고, 탄소원으로는 glucose와 maltose를 잘 이용하는 것으로 나타났다. 그리고 질소원으로는 yeast extract를 잘 이용하였으며 0.5% 농도에서 성장이 가장 잘 되었다.

Keywords

References

  1. Oyarzun, P., Arancibia, F., Canales, C. and Aroca, G. E., 'Biofiltration of High Concentration of Hydrogen Sulfide Using Thiobacillus thioparus,' Process Biochemistry, 00, 1-6(2003) https://doi.org/10.1016/S0032-9592(03)00050-5
  2. Cox, H. H. and Deshusses, M. A., "Co-treatment of H2S and Toluene in a Biotrickling Filter," Chem. Eng. J., 87, 101-110(2002) https://doi.org/10.1016/S1385-8947(01)00222-4
  3. Eckhart, A., Proceedings of Biological Treatment of Industrial Waste Gases, Dechema, Mar. 24-26, 2pp., Heidelberg, Germany (1987)
  4. Lee, T. J., Kwon, O. Y. and An, S. J., 'Removal of Odor Causing Compounds Using Adsorption of Crushed Refused-tire and Phenol Oxidizing Bacteria,' Cryptococcus Terreus A, J. KSEE, 22, 1601-1607(2000)
  5. Islander, R. I., Devinny, J. S., Mansfield, F., Postyn, A. and Shin, H., "Microbial Ecology of Crown Corrosions in Sewers," J. Environ. Eng., 117, 751-770(1990) https://doi.org/10.1061/(ASCE)0733-9372(1991)117:6(751)
  6. Hirai, M., Ohtake, M. and Shoda, M., "Removal Kinetics of Hydrogen Sulfide, Methanethiol and Dimethyl Sulfide by Peat Biofilters," J. Ferment. Bioeng., 70, 334-339(1990) https://doi.org/10.1016/0922-338X(90)90145-M
  7. Hirai, M., Kamamoto, M., Yani, M. and Shoda, M., "Comparison of the Biological H2S Removal Characteristics Among Four Inorganic Packing Materials," J. Biosci. Bioeng., 91(4), 396-402 (2001) https://doi.org/10.1263/jbb.91.396
  8. Cho, K.-S., Ryu, H. W. and Lee, N. Y., 'Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus thioxidants,' J. Biosci. Bioeng., 90, 25-31(2000)
  9. Wani, A. H., Branion, M. R. and Lau, A. K., "Effects of Periods of Starvation and Fluctuating Hydrogen Sulfide Concentration on Biofilter Dynamics and Performance," J. Hazard. Mater., 60, 287-303(1998) https://doi.org/10.1016/S0304-3894(98)00154-X
  10. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biodegradation of Hydrogen Sulfide by a Laboratory-scale Immobilized Pseudomonas putida CH11 biofilter", Biotechnol. Prog., 12, 773-778(1996) https://doi.org/10.1021/bp960058a
  11. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Operation Optimization of Thiobacillus thioparus CH11 in a Biofilter for Hydrogen Sulfide Removal," J. Biotechnol., 52, 31-38(1996) https://doi.org/10.1016/S0168-1656(96)01622-7
  12. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biological Elimination of H2S and NH3 from Wastegases by Biofilter Packed with Immobilized Heterotrophic Bacteria," Chemosphere, 43, 1043-1050 (2001) https://doi.org/10.1016/S0045-6535(00)00211-3
  13. Elias, A., Barona, A., Arreguy, A., Rios, J., Aranguiz, I. and Penas, J., 'Evaluation of a Packing Material for the Biodegradation of $H_2S$ and Product Analysis,' Process. Biochem., 37, 813- 820(2002) https://doi.org/10.1016/S0032-9592(01)00287-4
  14. Lim, K. H. and Park, S. W., "Transient Behavior of Biofilter Incubated with Thiobacillus sp. IW to Treat Waste-air Containing Hydrogen Sulfide," Korean J. Chem. Eng., 23(6), 965-971(2006) https://doi.org/10.1007/s11814-006-0016-0
  15. Ottengraf, S. P. P., in H. J. Rehm and G. Reed(Eds.), Exhaust gas purification: Biotechnology, VCH, Weinheim, Germany, 8, 426-452(1986)
  16. Sorial, G. A., Smith, F. L., Suidan, M. T. and Biswas, P., 'Evaluation of Trickle Bed Biofilter Media for Toluene Removal,' J. Air. Waste Manage. Assoc., 45, 801-810(1995) https://doi.org/10.1080/10473289.1995.10467410
  17. Lim, K. H. and Lee E. J., "Biofilter Modeling for Waste Air Treatment: Comparisons of Inherent Characteristics of Biofilter Models," Korean J. Chem. Eng., 20(2), 315-327 (2003) https://doi.org/10.1007/BF02697247
  18. Lim, K. H. and Park, S. W., "The Treatment of Waste-air Containing Mixed Solvent Using a Biofilter: 1. Transient Behavior of Biofilter to Treat Waste-air Containing Ethanol," Korean J. Chem. Eng., 21(6), 1161-1167(2004) https://doi.org/10.1007/BF02719488
  19. Lim, K. H., "The Treatment of Waste-air Containing Mixed Solvent Using a Biofilter: 2. Treatment of Waste-air Containing Ethanol and Toluene in a Biofilter," Korean J. Chem. Eng., 22(2), 228-233(2005) https://doi.org/10.1007/BF02701489
  20. Buisman, C. J., Geraats, B. G., Ljspeert, P. and Lettinga, G., "Optimization of Sulphur Production into a Biotechnological Sulphide-removing Reactor," Biotechnol Bioeng, 35, 50-56(1990) https://doi.org/10.1002/bit.260350108
  21. Lim, K. H., Lee, E. J., Lee, J. H., Jung, J. K. and You, D. J., 'Treatment of Waste-air with a Biofilter with the Media Fixed with Hydrogen Sulfide Oxidizing Strain Enterobacter sp. DAH-1056(renamed from YES-1153) and Ammonia Oxidizing Strain Bacillus Cereus YCa-1214,' Theories and Applications Chem. Eng., 12(2), 2055-2058(2006)