결정입자 제어를 위한 젖산칼슘 용석결정화 기술

Drowning-out Crystallization of Calcium Lactate for Crystal Size Control

  • 김종민 (동아대학교 화학공학과) ;
  • 장상목 (동아대학교 화학공학과) ;
  • 김인호 (충남대학교 화학공학과) ;
  • 구윤모 (인하대학교 생명공학과) ;
  • 홍혜현 (경희대학교 화학공학과, 산학협력기술연구원) ;
  • 김우식 (경희대학교 화학공학과, 산학협력기술연구원)
  • Kim, Jong-Min (Department of Chemical Engineering, Dong A University) ;
  • Chang, Sang Mok (Department of Chemical Engineering, Dong A University) ;
  • Kim, In-Ho (Department of Chemical Engineering, Chungnam University) ;
  • Koo, Yoon-Mo (Department of Biochemical Engineering, Inha University) ;
  • Hong, Haehyun (Department of Chemical Engineering, ILRI, Kyunghee University) ;
  • Kim, Woo-Sik (Department of Chemical Engineering, ILRI, Kyunghee University)
  • 투고 : 2009.07.06
  • 심사 : 2009.10.08
  • 발행 : 2009.12.31

초록

본 논문에서는 L(+)-calcium lactate를 정밀 분리하기 위한 drowning-out 결정화 기술에 대해 연구하였다. Calcium lactate 결정화는 calcium lactate 수용액에 반용매를 투입하여 유도하였으며 결정화 공정에서 결정입자의 크기를 제어할 수 있는 기술을 연구하였다. 결정화 공정에서 결정입자에 영향을 주는 인자로서 반용매의 종류, 반용매의 조성 그리고 교반속도를 고려하였다. 반용매로서는 알콜류(메탄올, 에탄올, n-프로판올, i-프로판올)를 선택하였다. 결정화 실험에 앞서, 과포화도를 고려하기 위하여 물-알콜 혼합용액에서의 calcium lactate의 용해도를 측정하였다. Drowning-out 결정화에 의해 fabric 모양의 calcium lactate 결정이 석출되었는데, 에탄올의 경우 fabric이 굵고 침상에 가까운 모양이었으며, 프로판올의 경우 hairy 모양에 가까웠다. 이러한 형상 특징으로 인하여 결정이 강하게 응집하는 경향을 보였다. 응집경향은 수용액에 대한 알콜 조성이 증가할수록 증가하였다. 반면 교반은 응집된 결정입자를 파쇄하는 효과가 강하게 나타났다. 따라서 결정화를 통해 얻어지는 결정입자의 크기는 반용매에 의한 결정입자 응집과 교반에 의한 결정입자 파쇄의 상대적 강도에 의존하였다.

In the present study, the drowning-out crystallization of L(+)-calcium lactate was investigated in order to develop the crystallization separation process. The crystallization of the calcium lactate was induced by injecting the alcoholic anti-solvent into the aqueous solution of calcium lactate and the control of the calcium lactate crystal size during the crystallization was primarily investigated under the consideration of the anti-solvent species, anti-solvent composition and agitation speed as the key operating factors. Alcohols of methanol, ethanol, n-propanol and i-propanol were used as the anti-solvent for the drowning-out crystallization. Prior to the crystallization experiment, the solubility of calcium lactate in the water-alcohol mixture was measured along with the variation of the alcohol species and composition, which was necessary to estimate the supersaturation level of the crystallization. By the drowning-out crystallization, the calcium lactate crystals of the fabric shape were obtained. Using the ethanol as the antisolvent, the fabric crystals close to the needle shape were produced. However, the hairy crystals were obtained by using the propanol as the anti-solvent. Due to such morphological features, the crystals was highly apt to form the aggregates. The aggregation of the crystals was intensified as increasing the alcohol fraction in the water-alcohol mixture. Meanwhile, the agitation caused the breakage of crystals, resulting in the decrease of the crystal size. Therefore, the crystal size in the crystallization was predominantly determined by the competition between the crystal aggregation and breakage.

키워드

참고문헌

  1. Mullin, J. W., Crystallization, Butterworth-Heinemann, Third edition,172-201(1993)
  2. Berry, D. A., Dye, S. R. and Ng, K. M., "Synthesis of Drowningout Crystallization-Based Separations," AIChE J., 43, 91-103(1997) https://doi.org/10.1002/aic.690430112
  3. Plasari, E., Grisoni, P. H. and Millermaux, J., "Influence of Process Parameters on the Precipitation of Organic Nanoparticles by Drowning-out," Trans IChemE., 75, Part A, 237-244(1997) https://doi.org/10.1205/026387697523507
  4. Alfassi, Z. B. and Mosseri, S., "Solventing out of Electrolytes from their Aqueous Solution," AIChE J. 30, 874-876(1984) https://doi.org/10.1002/aic.690300539
  5. Jagadesh, D., Chivate, M. R. and Tavare, N. S., "Batch Crystallization of Potassium Chloride by an Ammoniation Process," Ind. Eng. Chem. Res. 31, 561-568(1992) https://doi.org/10.1021/ie00002a017
  6. Ruiz, G. V. F., De Vera, G., Lopez, E. and Saquete, M. D., "Liquid- Liquid-solid Equilibria for the Ternary Systems Water-Sodium Chloride or Potassium Chloride-1-Propanol or 2-Propanol," Fluid Phase Equilib., 98, 141-147(1994) https://doi.org/10.1016/0378-3812(94)80113-4
  7. Iyer, H. V. and Przybycien, P. M., "Metal Affinity Protein Precipitation. Effects of Mixing, Protein Concentration, and Modifiers on Protein Fractionation," Biotechnol. Bioeng., 48, 324-332 (1995) https://doi.org/10.1002/bit.260480405
  8. Mersmann, A. and Kind, M., 'Chemical Engineering Aspects of Precipitation from Solutions,' Trans. Ind. Chem. Eng., 11, 264-276 (1990) https://doi.org/10.1002/ceat.270110136
  9. Francis, A. W., "Ternary Systems of Liquid Carbon Dioxide," J. Phys. Chem., 58, 1099-1114(1954) https://doi.org/10.1021/j150522a014
  10. Ho-Gutierrez, I. V., Cheluget, E. L., Vera, J. H. and Weber, M. E., "Liquid-Liquid Equilibrium of Aqueous Mixtures of Poly(Ethylene Glycol) with $Na_2SO_4$ or NaCl", J. Chem. Eng. Data, 39, 245- 248(1994) https://doi.org/10.1021/je00014a012
  11. Dorn, F., Smith, Jr. G. L. and McKenna, J. C., "The System $CuCl_2$- $CH_3OH-C_4H_8O_2 $ at 30.0 oC. 3-Copper (II) Chloride-Bis (1,4-) Dioxane," J. Chem. Eng. Data, 10(2), 195-196(1965) https://doi.org/10.1021/je60025a041
  12. Zepeta, I. V., Lozano, F. and Garfias, F. J., "Liquid-Liquid Equilibrium for the Ternary System NaOH-$H_2O$-BuOH," J. Chem. Eng. Data, 24(4), 287-289(1979) https://doi.org/10.1021/je60083a018
  13. Masy, J. C. and Cournil, M., "Using a Turbidimetric Method to Study the Kinetics of Agglomeration of Potassium Sulfate in a Liquid Medium," Chem. Eng. Sci., 46, 693-701(1991) https://doi.org/10.1016/0009-2509(91)80030-3
  14. Teresa, S. and Xavier, C., 'Effect of the Shear and Volume Fraction on the Aggregation and Breakup of Particles,' AIChE. J., 44,1724-1730(1998) https://doi.org/10.1002/aic.690440803
  15. Teresa, S., Jordi, C. and Xavier, C., "Aggregation and Breakup of Particles in a Shear Flow," J. Colloid Interf. Sci., 187, 466-473 (1997) https://doi.org/10.1006/jcis.1996.4710
  16. McCabe, W. L., Smith, J. C. and Harriott, P., Unit Operation of Chemical Engineering, 5th, McGraw-Hill, 242(1993)