Properties Evaluation of Bio-Composite by Content and Particle Size of Bamboo Flour

대나무 분말의 함량 및 입자 크기에 따른 바이오복합재의 물성 평가

  • Lee, Sena (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Byoung-Ho (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Hyun-Joong (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Sumin (Research Team for Biomass based Bio-Materials, Research Institute for Agriculture & Life Science, Seoul National University) ;
  • Eom, Young Geun (Department of Forest Products, College of Forest Science, Kookmin University)
  • 이세나 (서울대학교 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실) ;
  • 이병호 (서울대학교 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실) ;
  • 김현중 (서울대학교 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실) ;
  • 김수민 (서울대학교 농업생명과학연구원 바이오매스 기반 바이오소재 연구팀) ;
  • 엄영근 (국민대학교 삼림과학대학 임산공학과 목재해부 및 공학목재 연구실)
  • Received : 2009.03.18
  • Accepted : 2009.04.29
  • Published : 2009.07.25

Abstract

The representative eco-friendly materials, or bio-composites, were made by incorporating biodegradable polymer of polybutylene succinate (PBS) as the matrix and bamboo flour (BF) as the natural filler. In present study, the effects of content and particle size of natural filler on the bio-composites were carried out around their mechanical, visco-elastic, and thermal properties. By the incorporation of BF, the tensile properties decreased but the viscoelastic and thermal properties revealed positive effect through interaction between the polymer and natural filler. Also, the vulnerability of interfacial adhesion between hydrophobic PBS and hydrophilic BF appeared to adversely affect the properties of bio-composites.

대표적인 친환경 소재인 바이오복합재(bio-composite)의 제조를 위해 기질 고분자로는 생분해성 고분자인 polybutylene succinate (PBS)를 그리고 충전제(filler)로는 대나무 분말(bamboo flour, BF)을 사용하였다. 본 연구에서는 BF의 함량 및 입자 크기가 바이오복합재의 기계적 점탄성적 특성 및 열적 특성에 미치는 영향을 평가하였는데 천연충전제인 BF의 첨가에 따라 인장강도는 감소하였지만 점탄성적 및 열적 특성은 고분자와의 상호작용을 통해 보다 안정적인 결과를 보였다. 또한, 소수성을 나타내는 PBS와 친수성인 BF 사이의 낮은 계면 결합이 바이오복합재의 물성 저하에 영향을 미친다는 사실이 확인되었다.

Keywords

Acknowledgement

Supported by : 국민대학교

References

  1. 심재훈, 조동환, 윤진산. 2008. 천연섬유와 바이오복합재료. 고분자과학과 기술, 19(4): 299∼306
  2. 이정인. 2003. 대나무 섬유. 섬유기술과 산업, 7(3): 359∼363
  3. 조동환, 이승구, 박원호, 한성옥. 2002. 바이오 섬유를 이용한 환경친화성 바이오 복합재료. 고분자과학과 기술, 13(4): 460∼476
  4. Amita, B., K. G. Rahul, N. B. Sati, and H. J. Chio. 2007. Compatibility of biodegradable poly (lacticacid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea-Australia Rheology Journal 19: 125∼131
  5. Bleach, N. C., S. N. Nazhat, K. E. Tanner, M. Kellom$\ddot{a}$ki, and P. T$\ddot{o}$rm$\ddot{a}$l$\ddot{a}$. 2002. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials 23: 1579∼1585 https://doi.org/10.1016/S0142-9612(01)00283-6
  6. Cheung, H. Y., K. T. Lau, X. M. Tao, and H. David. 2008. A potential material for tissue engineering: Silkworm silk/PLA biocomposite. Composite Part B: Engineering 39: 1026∼1033 https://doi.org/10.1016/j.compositesb.2007.11.009
  7. Colom, X., F. Carrasco, P. Pag$\ddot{e}$s, and J. Ca\tilde{n}avate.,2003. Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Composites Science and Technology 63: 161∼169 https://doi.org/10.1016/S0266-3538(02)00248-8
  8. Corbi\acute{e}re-Nicollier, T., L. B. Gfeller, L. Lundquist, Y. Letterrier, J. A. E. Månson, and O. Jolliet. 2001. Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resources, Conservation and Recycling 33: 267∼287 https://doi.org/10.1016/S0921-3449(01)00089-1
  9. Fay, J. J., C. J. Murphy, D. A. Thomas, and L. H. Sperling. 1991. Effect of morphology, crosslink density, and miscibility on interpenetrating polymer network damping effectiveness. Polymer Engineering and Science 31: 1731∼1741 https://doi.org/10.1002/pen.760312407
  10. Joshi, S. V., L. T. Drzal, A. K. Mohanty, and S. Arora. 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites?, Composites Part A: Applied Science and Manufacturing 35: 371∼376 https://doi.org/10.1016/j.compositesa.2003.09.016
  11. Kim, H. S., H. J. Kim, J. W. Lee, and I. G. Choi. 2006. Biodegradability of bio flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polymer Degradation and Stability, 91: 1117∼1127 https://doi.org/10.1016/j.polymdegradstab.2005.07.002
  12. Kim, H. S. 2008. Development and characterization of biodegradable bio-composites for automotive interior parts application. Ph.D. Thesis, Seoul National University, Seoul, Korea
  13. Lee, S. H. and W. Siqun. 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing 37: 80∼91 https://doi.org/10.1016/j.compositesa.2005.04.015
  14. Liu, L., J. Yu, L. Cheng, and X. Yang. 2009. Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability 94: 90∼94 https://doi.org/10.1016/j.polymdegradstab.2008.10.013
  15. Mitsuhiro, S., O. Koichi, T. Naoqumi, Y. Ryutoku, and T. Hiroyuku. 2003. Biocomposites made from short abaca fiber and biodegradable polyesters. Macromolecular Materials and Engineering 288: 35∼43 https://doi.org/10.1002/mame.200290031
  16. Mohanty, A. K., M. Misra, and L. T. Drzal. 2002. Sustainable bio-composites from renewable resources:Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 10: 19∼26 https://doi.org/10.1023/A:1021013921916
  17. Naozumi, T., U. Kohei, O. Koichi, and S. Mitsuhiro. 2001. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polymer Degradation and Stability 86: 401∼409 https://doi.org/10.1016/j.polymdegradstab.2004.04.026
  18. Nicole, S. 1997. Effect of species and particle size on properties of wood-flour-filled polypropylene composites. Intertech Conferences, pp. 1∼16
  19. Paul, W., I. Jan, and V. Ignaas. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology 63:1259∼1264 https://doi.org/10.1016/S0266-3538(03)00096-4
  20. Pothan, L. A., Z. Oommen, and S. Thomas. 2003. Dynamic mechanical analysis of banana fiber reinforced reinforced polyester composites. Composite Science and Technology 63: 283∼293 https://doi.org/10.1016/S0266-3538(02)00254-3
  21. Rana, A. K., B. C. Mitra, and A. N. Banerjee. 1999. Short jute fiber-reinforced polypropylene composites: Dynamic mechanical study. Journal of Applied Polymer Science 71: 531∼539 https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<531::AID-APP2>3.0.CO;2-I
  22. Schartel, B., U. Braun, U. Schwarz, and S. Reinemann. 2003. Fiber retardancy of polypropylene/flax blends. Polymer 44: 6241∼6250 https://doi.org/10.1016/S0032-3861(03)00692-X
  23. Zhao, J. H., X. Q. Wang, J. Zeng, G. Yang, F. H. Shi, and Q. Yan. 2005. Biodegradation of poly(butylene succinate) in compost. Journal of Applied Polymer Science 97: 2273∼2278 https://doi.org/10.1002/app.22009