DOI QR코드

DOI QR Code

가와사키병의 관상동맥 이상과 catechol-O-methyltransferase 유전자의 단일염기다형성

The relationship between catechol-O-methyltransferase gene polymorphism and coronary artery abnormality in Kawasaki disease

  • 이효진 (성애병원 소아청소년과) ;
  • 이명숙 (성애병원 소아청소년과) ;
  • 김지숙 (성애병원 소아청소년과) ;
  • 김은령 (성애병원 소아청소년과) ;
  • 강성욱 (경희대학교 고황의학연구소) ;
  • 김수강 (경희대학교 고황의학연구소) ;
  • 정주호 (경희대학교 고황의학연구소) ;
  • 윤경림 (경희대학교 동서신의학병원 소아과청소년과) ;
  • 한미영 (경희대학교 의과대학 소아과학교실) ;
  • 차성호 (경희대학교 의과대학 소아과학교실)
  • Lee, Hyo Jin (Department of Pediatrics, Sung-Ae General Hospital) ;
  • Lee, Myung Sook (Department of Pediatrics, Sung-Ae General Hospital) ;
  • Kim, Ji Sook (Department of Pediatrics, Sung-Ae General Hospital) ;
  • Kim, Eun Ryoung (Department of Pediatrics, Sung-Ae General Hospital) ;
  • Kang, Sung Wook (Kohwang Medical Research Institute, School of Medicine, Kyunghee University) ;
  • Kim, Soo Kang (Kohwang Medical Research Institute, School of Medicine, Kyunghee University) ;
  • Chung, Joo Ho (Kohwang Medical Research Institute, School of Medicine, Kyunghee University) ;
  • Yoon, Kyung Lim (Department of Pediatrics, East-West Neo-medical Center, Kyunghee University) ;
  • Han, Mi Young (Department of Pediatrics, College of Medicine, Kyunghee University) ;
  • Cha, Seong Ho (Department of Pediatrics, College of Medicine, Kyunghee University)
  • 투고 : 2008.07.04
  • 심사 : 2008.09.04
  • 발행 : 2009.01.15

초록

목 적 : 가와사키병은 극동아시아인에서 다른 인종보다 높은 발생빈도를 보이고 여러 유전자 다형성이 보고되고 있다. COMT 는 염색체 22q11에 위치한 유전자로 메틸기접합을 촉진시켜 도파민, 에피네프린, 노르에피네프린 같은 카테콜아민 신경전달 물질을 불활성화 시키는 역할을 한다. COMT 유전자의 다형성은 estradiol 대사와 연관되어 혈압과 심근경색 등 심장질환과의 연관성이 보고되었고, 급성 관상동맥 질환과 관련이 있다고 보고되었다. 이 연구에서는 가와사키병에서 관상동맥 확장과 COMT 유전자 다형성과의 연관성을 알아보고자 하였다. 방 법 : 가와사키병 환자군 101명과 대조군 306명으로부터 혈액 2 mL를 채취하여 DNA를 분리하였으며, PCR 방법으로 COMT 유전자의 rs4680과 rs769224의 Guanine에서 Adenine으로의 단일염기다형성(SNP)을 분석하였다. 환자군 중 관상동맥의 확장을 동반한 37명과 관상동맥 확장이 없는 62명 대상으로 COMT 유전자의 단일염기다형성에 대한 관련성을 확인하였다. 결과 : 가와사키병 환자군과 대조군 사이에 COMT 유전자의 연관성은 보이지 않았다. COMT 유전자의 rs4680에서 가와사키병 환자군 중 관상동맥 확장을 가진 37명은 유전형 G/G (Val158 Val)는 19명(51.4%), G/A(Val158Met)는 13명(35.1%), A/A (Met158Met)는 5명(13.5%)이었고 관상동맥 확장이 없는 62명에서는 G/G (Val158Val)는 34명(54.8%), G/A (Val158Met)는 25명(40.3%), A/A (Met158Met)는 3명(4.8%)으로 통계학적 유의성이 없었으나(codominant P=0.32, dominant P=0.74, recessive P=0.13), rs769224에서는 관상동맥 확장을 가진 37명은 유전형 G/G는 30명(81.1%), G/A는 6명(16.2%), A/A는 1명(2.7 %)이었고 관상동맥 확장이 없는 62명에서는 G/G는 61명(98.4 %), G/A 1명(1.6%), A/A 0명(0.0%)으로 codominant와 dominant 모델에서 통계학적 유의성이 있었다(codominant P=0.0077, dominant P=0.0021, recessive P=0.16). 결론 : COMT 유전자의 단일염기다형성은 가와사키병과의 연관성은 보이지 않았고, rs4680 다형성과 관상동맥 확장은 연관성을 보이지 않았으나 rs769224 다형성과 관상동맥 확장은 통계학적으로 의미있게 연관성이 있었다.

Purpose : Many gene polymorphisms are associated with coronary artery abnormalities in Kawasaki disease. Catechol-O- methyltransferase (COMT) plays an important role in the metabolism of catecholamines, catechol estrogen, and catechol drugs. Polymorphisms of the COMT gene are reported to be associated with myocardial infarction and coronary artery abnormalities. The aim of this study was to evaluate the relationship between COMT gene polymorphisms and coronary artery abnormalities in Kawasaki disease patients. Methods : One hundred and one Korean children with Kawasaki disease and 306 healthy Korean control subjects were enrolled in this study. The polymorphisms of the COMT gene were analyzed by direct sequencing. Results : There were no differences in the genotype and allelic frequency of the rs4680 and rs769224 polymorphic sites between Kawasaki disease and control subjects. Further, no significant difference was found in the rs4680 polymorphism between patients with coronary artery abnormalities and patients without coronary artery abnormalities (codominant P=0.32, dominant P=0.74, recessive P=0.13). However, the distribution of the rs769224 polymorphism was significantly different between patients with coronary artery abnormalities and patients without coronary artery abnormalities (codominant P= 0.0077, dominant P=0.0021, recessive P=0.16). Conclusion : Our results indicate that the polymorphisms of the rs769224 gene might be related to the development of coronary artery abnormalities in Kawasaki disease.

키워드

참고문헌

  1. Kato H, Ichinose E, Yoshioka F, Takechi T, Matsunaga S, Suzuki K, et al. Fate of coronary aneurysms in Kawasaki disease: serial coronary angiography and long-term follow- up study. Am J Cardiol. 1982;49:1758-66 https://doi.org/10.1016/0002-9149(82)90256-9
  2. Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 1996;94:1379-85
  3. Newburger JW, Takahashi M, Beiser AS, Burns JC, Bastian J, Chung KJ, et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med 1991;324:1633-9
  4. Newburger JW, Takahashi M, Burns JC, Beiser AS, Chung KJ, Duffy CE, et al. The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med 1986;315: 341-7 https://doi.org/10.1056/NEJM198608073150601
  5. Satou GM, Giamelli J, Gewitz MH. Kawasaki disease: diagnosis, management, and long-term implications. Cardiol Rev 2007;15:163-9 https://doi.org/10.1097/CRD.0b013e31802ea93f
  6. Dajani AS, Taubert KA, Gerber MA, Shulman ST, Ferrieri P, Freed M, et al. Diagnosis and therapy of Kawasaki disease in children. Circulation 1993;87:1776-80
  7. Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 1967;16:178-222
  8. Rowley AH, Shulman ST. Kawasaki syndrome. Clin Microbiol Rev 1998;11:405-14
  9. Hong YM. Worldwide review of genetic studies in Kawasaki disease. J Korean Pediatr Cardiol Soc 2007;11:112-5 https://doi.org/10.3339/jkspn.2007.11.1.112
  10. Senzaki H, Masutani S, Kobayashi J, Kobayashi T, Nakano H, Nagasaka H, et al. Circulating matrix metalloproteinases and their inhibitors in patients with Kawasaki disease. Circulation 2001;104:860-3 https://doi.org/10.1161/hc3301.095286
  11. Senzaki H, Kobayashi T, Nagasaka H, Nakano H, Kyo S, Yokote Y, et al. Plasminogen activator inhibitor-1 in patients with Kawasaki disease: diagnostic value for the prediction of coronary artery lesion and implication for a new mode of therapy. Pediatr Res 2003;53:983-8 https://doi.org/10.1203/01.PDR.0000061566.63383.F4
  12. Shim YH, Kim HS, Sohn S, Hong YM. Insertion/deletion polymorphism of angiotensin converting enzyme gene in Kawasaki disease. J Korean Med Sci 2006;21:208-11 https://doi.org/10.3346/jkms.2006.21.2.208
  13. Quasney MW, Bronstein DE, Cantor RM, Zhang Q, Stroupe C, Shike H, et al. Increased frequency of alleles associated with elevated tumor necrosis factor-alpha levels in children with Kawasaki disease. Pediatr Res 2001;49:686-90 https://doi.org/10.1203/00006450-200105000-00013
  14. Kariyazono H, Ohno T, Khajoee V, Ihara K, Kusuhara K, Kinukawa N, et al. Association of vascular endothelial growth factor (VEGF) and VEGF receptor gene polymorphisms with coronary artery lesions of Kawasaki disease. Pediatr Res 2004;56:953-9 https://doi.org/10.1203/01.PDR.0000145280.26284.B9
  15. Grossman MH, Emanuel BS, Budarf ML. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1 q11.2. Genomics 1992;12:822-5 https://doi.org/10.1016/0888-7543(92)90316-K
  16. Winqvist R, Lundstrom K, Salminen M, Laatikainen M, Ulmanen I. The human catechol-O-methyltransferase (COMT) gene maps to band q11.2 of chromosome 22 and shows a frequent RFLP with BgII. Cytogenet Cell Genet 1992;59:253-7 https://doi.org/10.1159/000133262
  17. Axelrod J, Tomchick R. Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 1958;233:702-5
  18. Guldberg HC, Marsden CA. Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev 1975;27:135-206
  19. Ruiz-Sanz JI, Aurrekoetxea I, Ruiz del Agua A, Ruiz-Larrea MB. Detection of catechol-O-methyltransferase Val158Met polymorphism by a simple one-step tetra-primer amplification refractory mutation system-PCR. Mol Cell Probes 2007; 21:202-7 https://doi.org/10.1016/j.mcp.2006.12.001
  20. Hosk L. Role of the COMT gene Val158Met polymorphism in mental disorders: a review. Eur Psychiatry 2007;22:276-81 https://doi.org/10.1016/j.eurpsy.2007.02.002
  21. Zhu BT. Catechol-O-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis. Curr Drug Metab 2002;3:321-49 https://doi.org/10.2174/1389200023337586
  22. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996;6:243-50 https://doi.org/10.1097/00008571-199606000-00007
  23. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Meln K, Julkunen I, et al. Kinetics of human soluble and membrane- bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme Biochemistry 1995;34:4202-10 https://doi.org/10.1021/bi00013a008
  24. McLeod HL, Fang L, Luo X, Scott EP, Evans WE. Ethnic differences in erythrocyte catechol-O-methyltransferase activity in black and white Americans. J Pharmacol Exp Ther 1994;270:26-9
  25. Yoon KS, Yim DS, Jun G, Chung HH, Kim HM, Jang IJ, et al. Distribution of catechol O-methyltransferase genotypes in a healthy Korean population. J Korean Soc Clin Pharmacol 2000;8:196-201
  26. Hagen K, Pettersen E, Stovner LJ, Skorpen F, Holmen J, Zwart JA. High systolic blood pressure is associated with Val/Val genotype in the catechol-o-methyltransferase gene. The Nord-Trndelag Health Study (HUNT). Am J Hypertens 2007;20:21-6
  27. Voutilainen S, Tuomainen TP, Korhonen M, Mursu J, Virtanen JK, Happonen P, et al. Functional COMT Val158Met polymorphism, risk of acute coronary events and serum homocysteine: the kuopio ischaemic heart disease risk factor study. PLoS ONE 2007;2:e181 https://doi.org/10.1371/journal.pone.0000181
  28. Research Committee on Kawasaki disease. Report of subcommittee on standardization of diagnostic criteria and reporting of coronary artery lesions in Kawasaki disease. Ministry of Health and Welfare, Tokyo, 1984
  29. Sol X, Guin E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006;22:1928-9 https://doi.org/10.1093/bioinformatics/btl268
  30. Fujita Y, Nakamura Y, Sakata K, Hara N, Kobayashi M, Nagai M, et al. Kawasaki disease in families. Pediatrics 1989;84:666-9
  31. Bertocci B, Miggiano V, Da Prada M, Dembic Z, Lahm HW, Malherbe P. Human catechol-O-methyltransferase: cloning and expression of the membrane-associated form. Proc Natl Acad Sci U S A 1991;88:1416-20 https://doi.org/10.1073/pnas.88.4.1416
  32. Lundstrm K, Salminen M, Jalanko A, Savolainen R, Ulmanen I. Cloning and characterization of human placental catechol- O-methyltransferase cDNA. DNA Cell Biol 1991;10:181-9 https://doi.org/10.1089/dna.1991.10.181
  33. Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 1996;36:203-32 https://doi.org/10.1146/annurev.pa.36.040196.001223
  34. Eriksson AL, Skrtic S, Niklason A, Hultn LM, Wiklund O, Hedner T, et al. Association between the low activity genotype of catechol-O-methyltransferase and myocardial infarction in a hypertensive population. Eur Heart J 2004;25:386-91 https://doi.org/10.1016/j.ehj.2003.12.026
  35. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002;288:2015-22 https://doi.org/10.1001/jama.288.16.2015
  36. Nygrd O, Vollset SE, Refsum H, Brattstrm L, Ueland PM. Total homocysteine and cardiovascular disease. J Intern Med 1999;246:425-54 https://doi.org/10.1046/j.1365-2796.1999.00512.x