Fabrication of Carbon Nanotube Supported Molybdenum Carbide Catalyst and Electrochemical Oxidation Properties

카본나노튜브에 담지된 몰리브데늄 카바이드 촉매의 제조 및 전기화학적 산화반응 특성

  • Cho, Hong-Baek (Extreme-Density Energy Research Institute, Nagaoka University of Technology) ;
  • Suh, Min-Ho (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Park, Yeung-Ho (Division of Materials and Chemical Engineering, Hanyang University)
  • 조홍백 (나가오카기술대학교 극한에너지기술연구센터) ;
  • 서민호 (한양대학교 공학대학 재료화학공학부) ;
  • 박융호 (한양대학교 공학대학 재료화학공학부)
  • Received : 2008.07.28
  • Accepted : 2008.10.04
  • Published : 2009.02.10

Abstract

Carbon nanotube supported molybdenum carbide catalysts were prepared as a function of various preparation conditions and characterized, and their catalytic activities were compared through electrochemical oxidation of methanol. To overcome the low activity of a transition metal catalyst, carbon nanotube was used as a support, and the amount and the kind of precursors, acid treatment method, and carburization temperature were varied for the catalyst preparation. ICP-AES, XRD and TEM were used for the catalyst characterization. Based on the various preparation methods of carbon nanotube supported molybdenum carbide catalysts ($Mo_2C/CNT$), the size and the amount of supported catalysts could be controlled, and their effects on the electrochemical oxidation could be explained.

카본나노튜브에 담지된 몰리브데늄 카바이드 촉매를 다양한 제조 조건을 통해 제조하여 촉매특성을 분석하였고, 메탄올의 전기화학적 산화반응을 통해 촉매의 활성을 비교하였다. 촉매로써 전이금속의 낮은 활성을 극복하기 위한 방안으로 카본나노튜브를 지지체로 사용하였으며 전구체의 양 및 종류, 지지체의 산처리 방법, 탄화공정 온도조건 등을 변화하여 촉매를 제조하였다. 제조된 촉매는 ICP-AES, XRD, TEM을 통하여 촉매의 특성을 분석하였고, 메탄올의 전기화학적 산화반응을 통해 촉매의 활성을 비교하였다. 몰리브데늄 카바이드 촉매($Mo_2C/CNT$)의 다양한 제조방법으로 입자크기와 담지량을 변화시킬 수 있었으며, 입자의 크기와 담지량의 변화에 따른 전기화학적 산화반응의 특성을 설명할 수 있었다.

Keywords

References

  1. J.-H. Choi, K.-W. Park, B.-K. Kwon, and Y. E. Sung, J. Electrochem. Soc., 150, 973 (2003) https://doi.org/10.1149/1.1581011
  2. J. H. Sinfelt and D. J. C. Yates, Nature Phys. Sci., 229, 27 (1971)
  3. J. G. Choi, J. R. Brenner, and L. T. Thompson, J. Catal., 154, 33 (1995) https://doi.org/10.1006/jcat.1995.1143
  4. H. Abe and A. T. Bell, J. Catal., 142, 430 (1993) https://doi.org/10.1006/jcat.1993.1220
  5. G. Dj$\acute{e}$ga-Mariadassou, M. Boudart, G. Bugli, and C. Sayag, Catal. Lett., 31, 411 (1995) https://doi.org/10.1007/BF00808605
  6. T. Matsumoto, Y. Nagashima, and T. Yamazaki, J. Electrochem. Solid-State Lett., 9, A160 (2006) https://doi.org/10.1149/1.2165707
  7. R. Yu, L. Chen, Q. Liu, J. Lin, K. L. Tan, H. S. O. Chan, G. Q. Xu, and T. S. A. Hor, Chem. Matter., 10, 718 (1998) https://doi.org/10.1021/cm970364z
  8. V. Heine, Phys. Rev., 153, 673 (1967) https://doi.org/10.1103/PhysRev.153.673
  9. T. Kudo, G. Kawamura, and H. Okamoto, J. Electrochem. Soc., 130, 1491 (1983) https://doi.org/10.1149/1.2120017
  10. K. S. Suslick, T. H. Hyeon, M. Fang, and A. A. Cichowlas, Mater. Sci. Eng., A204, 186 (1995)
  11. 박혜림, 성균관대학교 석사학위논문 (2003)
  12. C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. Terry, J. Phys. Chem. B., 105, 1115 (2001) https://doi.org/10.1021/jp003280d
  13. A. Boyano, M. E. Galvez, R. Moliner, and M. J. Lazaro, Fuel, 87, 2058 (2008) https://doi.org/10.1016/j.fuel.2007.10.013
  14. C.-H. Li, K.-F. Yao, and J. Liang, Carbon, 41, 858 (2003) https://doi.org/10.1016/S0008-6223(02)00450-5
  15. D.-J. Suh and T.-J. Park, Ind. Eng. Chem. Res., 31, 1849 (1992) https://doi.org/10.1021/ie00008a003
  16. D.-J. Suh, T.-J. Park, and S.-K. Ihm, J. Catal., 149, 486 (1994) https://doi.org/10.1006/jcat.1994.1315
  17. C. Amorim and M. A Keane, J. Chem. Technol. Biotechnol., 83, 662 (2008) https://doi.org/10.1002/jctb.1846
  18. F. Rodriguez-Ranoso, Carbon, 36, 159 (1998) https://doi.org/10.1016/S0008-6223(97)00173-5