Measurement of Isoelectric Point of Amine Oxide Zwitterionic Surfactant by QCM (Quartz Crystal Microbalance)

QCM (Quartz Crystal Microbalance)을 활용한 Amine Oxide 양쪽성 계면활성제의 등전점 측정에 관한 연구

  • Kim, JiSung (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, JunSeok (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 김지성 (동국대학교 공과대학 화공생물공학과) ;
  • 박준석 (동국대학교 공과대학 화공생물공학과) ;
  • 임종주 (동국대학교 공과대학 화공생물공학과)
  • Received : 2008.07.02
  • Accepted : 2008.08.03
  • Published : 2009.02.10

Abstract

A zwitterionic surfactant shows not only detergency but also softening effect since it shows characteristics of a nonionic or an anionic surfactant above an isoelectric point, while showing characteristics of a cationic surfactant below an isoelectric point. Therefore, a zwitterionic surfactant can serve as a dual function surfactant by a single molecule through the interconversion of cleaning and softening effects depending on pH of the aqueous solution. In this study, the dual function characteristics of an amine oxide zwitterionic surfactant were investigated by measuring the zeta potential and the isoelectric point using quartz crystal microbalance (QCM). In addition, the physical properties of an amine oxide surfactant such as critical micelle concentration, surface tension, interfacial tension, contact angle and viscosity were measured and phase behavior study was also performed. The isoelectric point of an amine oxide surfactant determined by zeta potential measurement was near 7.35 and that obtained by QCM experiment was about 7.4, where both results were found to be close to the value reported in the literature.

양쪽성 계면활성제는 등전점 이하의 pH 조건에서 양이온 계면활성제로 작용함으로써 유연력을 나타낼 수 있으며, 등전점 이상의 pH 조건에서는 음이온 혹은 비이온 계면활성제로 작용하여 세정력을 나타낼 수 있다. 따라서 pH에 따른 양쪽성 계면활성제의 특성을 활용하면 한 종류의 계면활성제 분자로 세정력과 유연력을 동시에 발휘할 수 있다. 본 연구에서는 amine oxide 양쪽성 계면활성제에 대하여 계면활성제의 기본적인 물성(임계 마이셀 농도, 표면장력, 계면장력, 접촉각, 점도, 계면활성제 시스템의 상거동 등)을 측정하였으며, 또한 계면활성제 수용액에 대하여 zeta potential 측정과 QCM 실험을 통하여 양쪽성 계면활성제가 양이온 계면활성제에서 음이온 혹은 비이온 계면활성제로 작용이 전환되는 등전점을 결정하였다. 본 실험에서 사용한 amine oxide 양쪽성 계면활성제의 등전점은 7.35와 7.4인 것을 각각 zeta potential 측정과 QCM 실험을 통하여 확인할 수 있었으며, 이 결과는 문헌에 보고된 값과 유사한 결과를 나타냄을 알 수 있었다.

Keywords

References

  1. W. G. Cutler and E. Kissa, Detergency, Theory and Technology, Surfactant Science Series, 20, 1, Marcel Dekker, New York (1987)
  2. A. M. Schwartz, The Physical Chemistry of Detergency, ed. E. Matijevic, Surface Colloid Sci., 195, Wiley, New York (1972)
  3. D. S. Han, K. M. Yoo, J. S. Park, G. Y. Chi, K. M. Lee, and J. C. Lim, Applied Chemistry, 11, 229 (2007) https://doi.org/10.1002/jctb.5010110701
  4. K. Rendall, G. J. T. Tiddy, and M. A. Trevethan, J. Colloid Interface Sci., 98, 565 (1984) https://doi.org/10.1016/0021-9797(84)90183-8
  5. H. Hoffmann, C. Thunig, and C. A. Miller, Colloid Surf. A: Physicochem. Eng. Aspects, 67, 223 (1992)
  6. Y. C. Ro and K. D. Nam, J. Korean Ind. Eng. Chem., 5, 749 (1994)
  7. M. J. Rosen, T. Gao, Y. Nakasuji, and A. Masuyama, Colloid Surf. A: Physicochem. Eng. Aspects, 88, 1 (1994) https://doi.org/10.1016/0927-7757(94)80080-4
  8. M. J. Rang, J. C. Lim, C. A. Miller, C. Thunig, and H. H. Hoffmann, J. Colloid Interface Sci., 175, 440 (1995) https://doi.org/10.1006/jcis.1995.1474
  9. I. Harwigsson, F. Tiberg, and Y. Chevalier, J. Colloid Interface Sci., 183, 380 (1996) https://doi.org/10.1006/jcis.1996.0560
  10. P. D. Maria, A. Fontana, C. Gasbarri, and G. Siani, Tetrahedron, 61, 7176 (2005) https://doi.org/10.1016/j.tet.2005.05.035
  11. Y. C. Ro, T. Y. Kim, J. K. Jeong, and K. E. Nam, J. Korean Ind. Eng. Chem., 7, 215 (1996)
  12. Y. C. Ro, S. J. Lee, and K. D. Nam, J. Korean Ind. Eng. Chem., 6, 548 (1995)
  13. M. Yaseen, Y. Wang, T. J. Su, and J. R. Lu, J. Colloid Interface Sci., 288, 361 (2005) https://doi.org/10.1016/j.jcis.2005.03.024
  14. M. Yaseen, J. R. Lu, J. R. P. Webster, and J. Penfold, Biophysical chemistry, 117, 131 (2005)
  15. A. Pandit, C. A. Miller, and L. Quintero, Colloid Surf. A: Physicochem. Eng. Aspects, 98, 35 (1995) https://doi.org/10.1016/0927-7757(95)03095-U
  16. I. Baquerizo, M. A. Ruiz, J. A. Holgado, M. A. Cabrerizo, and V. Gallardo, Il Farmaco, 55, 583 (2000) https://doi.org/10.1016/S0014-827X(00)00083-5
  17. J. S. Park and J. C. Lim, Applied Chem., 10, 605 (2006)
  18. D. S. Han, K. M. Yoo, J. S. Park, G. Y. Chi, K. M. Lee, I. S. Cho, and J. C. Lim, Applied Chem., 11, 229 (2007) https://doi.org/10.1002/jctb.5010110701
  19. T. Y. Chiu and A. E. James, Colloid Surf. A: Physicochem, Eng. Aspects, 280, 58 (2006) https://doi.org/10.1016/j.colsurfa.2006.01.030
  20. M. W. Jeong, S. G. Oh, and Y. C. Kim, Colloid Surf. A: Physicochem. Eng. Aspects, 181, 247 (2001) https://doi.org/10.1016/S0927-7757(00)00796-2
  21. P. G. Nilsson, W. F. Pacynko, and G. J. T. Tiddy, Current Opinion Colloid Interface Sci., 9, 117 (2004) https://doi.org/10.1016/j.cocis.2004.05.015
  22. Z. Limin, L. Ganzuo, and S. Zhiwei, Colloid Surf. A: Physicochem. Eng. Aspects, 190, 275 (2001) https://doi.org/10.1016/S0927-7757(01)00693-8