Solubilization Mechanism of n-Octane by Polymeric Nonionic Surfactant Solution

고분자 비이온 계면활성제 수용액에 의한 옥탄의 가용화 메커니즘에 관한 연구

  • Bae, MinJung (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 배민정 (동국대학교 공과대학 화공생물공학과) ;
  • 임종주 (동국대학교 공과대학 화공생물공학과)
  • Received : 2008.07.02
  • Accepted : 2008.08.07
  • Published : 2009.02.10

Abstract

In this study, solubilization experiments of n-octane oil were performed by micellar solutions of polymeric nonionic surfactant Pluronic L64 ($EO_{13}PO_{30}EO_{13}$) at room temperature. A single spherical drop of n-octane was injected into aqueous surfactant solution using an oil drop contacting technique and solubilization rate of n-octane was measured by observing the size of oil drop with time. It was found that solubilization rate was independent of initial oil drop size but inversely proportional to the initial surfactant concentration. These results revealed that solubilization of n-octane oil by L64 micellar solution is controlled by interface-controlled mechanism rather than diffusion-controlled mechanism. Dynamic interfacial tension measurements showed that interfacial tension decreases such as from $2.59{\times}10^{-2}$ to $2.45{\times}10^{-2}$, and further to $2.13{\times}10^{-2}mN/m$ as surfactant concentration increases from 8 to 9 and further to 10 wt% respectively. The equilibration time was also found to decrease slightly with an increase in surfactant concentration. All three systems reached an equilibrium within 7 minutes.

본 연구에서는 고분자 비이온 계면활성제 Pluronic L64 ($EO_{13}PO_{30}EO_{13}$) 마이셀에 의한 옥탄의 가용화에 관한 실험을 수행하였다. Oil drop contacting 실험을 이용하여 옥탄 오일을 계면활성제 마이셀 용액에 주입한 후 시간에 따른 옥탄 오일의 크기를 측정하여 가용화 속도를 결정하였다. 가용화 속도는 초기 오일 drop의 크기에 상관없이 일정하게 나타났으며, 계면활성제 농도에 따라 거의 선형적으로 증가함을 알 수 있었다. 이러한 결과로부터 Pluronic L64 마이셀에 의한 옥탄의 가용화는 diffusion-controlled 메커니즘이 아닌, interface-controlled 메커니즘을 따르는 것을 확인할 수 있었다. Spinning drop tensiometer를 이용한 dynamic interfacial tension은 계면활성제 농도를 8, 9, 10 wt%로 증가시킴에 따라 각각 $2.59{\times}10^{-2}$, $2.45{\times}10^{-2}$, $2.13{\times}10^{-2}mN/m$으로 감소하는 것을 알 수 있었다. 평형에 도달하는 데 걸리는 시간은 계면활성제 농도에 따라 감소하지만 그 차이가 매우 작았으며, 약 7 min 이내에 평형에 도달하는 것을 확인할 수 있었다.

Keywords

References

  1. D. J. McClements and S. R. Dungan, Colloids Surf A: Physicochem. Eng. Aspects, 104, 127 (1995) https://doi.org/10.1016/0927-7757(95)03261-4
  2. J. Weiss, J. Coupland, and D. J. McClements, J. Phys. Chem., 100, 1066 (1996) https://doi.org/10.1021/jp9524892
  3. J. Weiss and D. J. McClements, Langmuir, 16, 5879 (2000) https://doi.org/10.1021/la9914763
  4. C. S. Dunaway, S. D. Christian, and J. F. Scamehorn, Solubilization in Surfactant Aggregates, ed. S. D. Christian and J. F. Scamehorn, Surfactant Science Series 55, 1, Marcel Dekker, Inc., New York (1995)
  5. G. J. Cho and D. T. Glatzhofer, J. Ind. Eng. Chem., 3, 29 (1997)
  6. S. G. Rho and C. H. Kang, J. Ind. Eng. Chem., 10, 247 (2004)
  7. H. Y. Cheon, M. S. Kim, and N. H. Jeong, J. Ind. Eng. Chem., 11, 10 (2005)
  8. J. H. Oh, J. Kor. Ind. Eng. Chem., 11, 80 (2000)
  9. B. J. Carroll, J. Colloid Interface Sci., 79, 126 (1981) https://doi.org/10.1016/0021-9797(81)90055-2
  10. S. R. Dungan, B. H. Tai, and N. I. Gerhardt, Colloids Surf. A: Phys. Chem. Eng. Asp., 216, 149 (2003) https://doi.org/10.1016/S0927-7757(02)00549-6
  11. A. S. Kabalnov and J. Weers, Langmuir, 12, 3442 (1996) https://doi.org/10.1021/la9600457
  12. A. A. Pena and C. A. Miller, J. Colloid Interface Sci., 123, 241 (2006) https://doi.org/10.1016/j.cis.2006.05.005
  13. B. J. Carroll, B. G. C. O'Rourke, and A. J. I. Ward, J. Pharm. Pharmacol., 34, 287 (1982) https://doi.org/10.1111/j.2042-7158.1982.tb04709.x
  14. B. J. Carroll, J. Chem. Soc. Faraday Trans., 82, 3205 (1986) https://doi.org/10.1039/f19868203205
  15. B. J. Carroll and P. J. Doyle, J. Pharm. Pharmacol., 40, 229 (1988) https://doi.org/10.1111/j.2042-7158.1988.tb05233.x
  16. A. C. Donegan and A. J. I. Ward, J. Pharm. Pharmacol., 39, 45 (1987) https://doi.org/10.1111/j.2042-7158.1987.tb07160.x
  17. B. G. C. O'Rourke, A. J. I. Ward, and B. J. Carroll, J. Pharm. Pharmacol., 39, 865 (1987) https://doi.org/10.1111/j.2042-7158.1987.tb03119.x
  18. B. H. Chen and C. A. Miller, Colloids Surf. A: Phys. Chem. Eng. Asp., 128, 129 (1997) https://doi.org/10.1016/S0927-7757(96)03920-9
  19. B. H. Chen, C. A. Miller, and P. R. Garrett, Langmuir, 14, 31 (1998) https://doi.org/10.1021/la970286u
  20. P. D. Todorov, P. A. Kralchevsky, N. D. Denkov, G. Broze, and A. Mehreteab, J. Colloid Interface Sci., 245, 371 (2002) https://doi.org/10.1006/jcis.2001.8031
  21. C. L. Williams, A. R. Bhakta, and P. Neogi, J. Phys. Chem. B, 103, 3242 (1999) https://doi.org/10.1021/jp984448m
  22. B. J. Kim, S. S. Im, and S. G. Oh, Langmuir, 17, 565 (2001) https://doi.org/10.1021/la0012889
  23. K. C. Hoang and S. Mecozzi, Langmuir, 20, 7347 (2004) https://doi.org/10.1021/la049128a
  24. D. J. Prak, L. M. Abriola, W. J. Weber, and K. A. Bocskay, Environ. Sci. Technol., 34 476 (2000) https://doi.org/10.1021/es9903431
  25. J. C. Lim, C. A. Miller, and C. H. Yang, Colloids Surf., 66, 45 (1992) https://doi.org/10.1016/0166-6622(92)80119-M
  26. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 10, 537 (1999) https://doi.org/10.1007/s100510050883
  27. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, Hwahak Gonghak, 38, 179 (2000)
  28. J. W. Han and J. C. Lim, Korean Chem. Eng. Res., 45, 226 (2007)
  29. J. C. Lim, Korean Chem. Eng. Res., 45, 219 (2007)
  30. J. C. Lim, J. Kor. Ind. Eng. Chem., 19, 59 (2008)