DOI QR코드

DOI QR Code

Identification of GATA2 and AP-1 Activator Elements within the Enhancer VNTR Occurring in Intron 5 of the Human SIRT3 Gene

  • 투고 : 2009.04.01
  • 심사 : 2009.06.30
  • 발행 : 2009.08.31

초록

Human SIRT3 gene contains an intronic VNTR enhancer. A T > C transition occurring in the second repeat of each VNTR allele implies the presence/absence of a putative GATA binding motif. A partially overlapping AP-1 site, not affected by the transition, was also identified. Aims of the present study were: 1) to verify if GATA and AP-1 sites could bind GATA2 and c-Jun/c-Fos factors, respectively; 2) to investigate whether such sites modulate the enhancer activity of the SIRT3-VNTR alleles. DAPA assay proved that GATA2 and c-Jun/c-Fos factors are able to bind the corresponding sites. Moreover, co-transfection experiments showed that the over-expression of GATA2 and c-Jun/c-Fos factors boosts the VNTR enhancer activity in an allelic-specific way. Furthermore, we established that GATA2 and c-Jun/c-Fos act additively in modulating the SIRT3-VNTR enhancer function. Therefore, GATA2 and AP-1 are functional sites and the T > C transition of the second VNTR repeat affects their activity.

키워드

과제정보

연구 과제 주관 기관 : Fondo Sociale Europeo - FSE

참고문헌

  1. Ahn, B.H., Kim, H.S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.X., and Finkel, T. (2008). A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 105, 14447-14452 https://doi.org/10.1073/pnas.0803790105
  2. Allison, S.J., and Milner, J. (2007). SIRT3 is a pro-apoptotic and partecipates in distinct basal apoptotic pathways. Cell Cycle 6, 2669-2677 https://doi.org/10.4161/cc.6.21.4866
  3. Bellizzi, D., Rose, G., Cavalcante, P., Covello, G., Dato, S., De Rango, F., Greco, V., Maggiolini, M., Feraco, E., Mari, V., et al. (2005). A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages.Genom-ics 85, 258-263 https://doi.org/10.1016/j.ygeno.2004.11.003
  4. Bellizzi, D., Dato, S., Cavalcante, P., Covello, G., Di Cianni, F., Passarino, G., Rose, G., and De Benedictis, G. (2007). Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics 89, 143-150 https://doi.org/10.1016/j.ygeno.2006.09.004
  5. Chiu, R., Boyle, W.J., Meek, J., Smeal, T., Hunter, T., and Karin, M. (1988). The c-Fos protein interacts with c-Jun/AP1 to stimulate transcription of AP1 responsive genes. Cell 54, 541-552 https://doi.org/10.1016/0092-8674(88)90076-1
  6. Cooper, H.M., and Spelbrink, J.N. (2008). The human Sirt3 protein deacetylase is exclusively mitochondrial. Biochem. J. 411, 279-285 https://doi.org/10.1042/BJ20071624
  7. Dannenberg, L.O., Chen, H.J., and Edenberg, H.J. (2005). GATA-2 and HNF-3beta regulate the human alcohol dehydrogenase 1A (ADH1A) gene. DNA Cell. Biol. 24, 543-552 https://doi.org/10.1089/dna.2005.24.543
  8. Dorfman, D.M., Wilson, D.B., Bruns, G.A., and Orkin, S.H. (1992). Human transcription factor GATA-2. J. Biol. Chem. 267, 1279-1285
  9. Haigis, M.C., and Guarente, L.P. (2006). Mammalian sirtuins - emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913-2921 https://doi.org/10.1101/gad.1467506
  10. Hallows, W.C., Lee, S., and Denu, J.M. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA 103, 10230-10235 https://doi.org/10.1073/pnas.0604392103
  11. Kawana, M., Lee, M.E., Quertermous, E.E., and Quertermous, T. (1995). Cooperative interaction of GATA-2 and AP1 regulates transcription of the endothelin-1 gene. Mol. Cell. Biol. 15, 4225-4231 https://doi.org/10.1128/MCB.15.8.4225
  12. Lombard, D.B., Alt, F.W., Cheng, H.L., Bunkenborg, J., Streeper, R.S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., et al. (2007). Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807-8814 https://doi.org/10.1128/MCB.01636-07
  13. Mahlknecht, U., Ho, A.D., and Voelter-Mahlknecht, S. (2006). Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene. Int. J. Oncol. 28, 447-456
  14. Majewski, J., and Ott, J. (2002). Distribution and characterization of regulatory elements in the human genome. Genome Res. 12, 1827-1836 https://doi.org/10.1101/gr.606402
  15. Marine, J., and Winoto, A. (1991). The human enhancer-binding protein Gata3 bind to several T-cell receptor regulatory elements. Proc. Natl. Acad. Sci. USA 88, 7284-7288 https://doi.org/10.1073/pnas.88.16.7284
  16. Masuda, A., Yoshikai, Y., Kume, H., and Matsuguchi, T. (2004). The interaction between GATA proteins and activator protein-1 promotes the transcription of IL-13 in mast cells. J. Immunol. 173,5564-5573 https://doi.org/10.4049/jimmunol.173.9.5564
  17. Michan, S., and Sinclair, D. (2007). Sirtuins in mammals: insights into their biological function. Biochem. J. 404, 1-13 https://doi.org/10.1042/BJ20070140
  18. North, B.J., and Sinclair. D.A. (2007). Sirtuins: a conserved key unlocking AceCS activity. Trends Biochem. Sci. 32, 1-4 https://doi.org/10.1016/j.tibs.2006.11.002
  19. Ohneda, K., and Yamamoto, M. (2002). Roles of hematopoietic transcription factors GATA-1 and GATA-2 in the development of red blood cell lineage. Acta Haematol. 108, 237-245 https://doi.org/10.1159/000065660
  20. Patient, K.J., and MacGhee, J.D. (2002). The GATA family (vertebrates and invertebrates). Curr. Opin. Genet. Dev. 12, 416-422 https://doi.org/10.1016/S0959-437X(02)00319-2
  21. Perkins, K.J., and Davies, K.E. (2003). Ets, Ap-1 and GATA factor families regulate the utrophin B promoter: potential regulatory mechanisms for endothelial-specific expression. FEBS Lett. 538, 168-172 https://doi.org/10.1016/S0014-5793(03)00175-3
  22. Rose, G., Dato, S., Altomare, K., Bellizzi, D., Garasto, S., Greco, V., Passarino, G., Feraco, E., Mari, V., Barbi, C., et al. (2003). Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp. Gerontol. 38, 1065-1070 https://doi.org/10.1016/S0531-5565(03)00209-2
  23. Scher, M.B., Vaquero, A., and Reinberg, D. (2007). SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 21, 920-928 https://doi.org/10.1101/gad.1527307
  24. Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C.F., and Steegborn, C. (2008). Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382, 790-801 https://doi.org/10.1016/j.jmb.2008.07.048
  25. Schwer, B., Bunkenborg, J., Verdin, R.O., Andersen, J.S., and Verdin, E. (2006). Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. USA 103, 10224-10229 https://doi.org/10.1073/pnas.0603968103
  26. Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat. Cell. Biol. 4, E131-E136 https://doi.org/10.1038/ncb0502-e131
  27. Shi, T., Wang, F., Stieren, E., and Tong, Q. (2005). SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560-13567 https://doi.org/10.1074/jbc.M414670200
  28. Tong, Q., Dalgin, G., Xu, H., Ting, C.N., Leiden, J.M., and Hotamisligil, G.S. (2000). Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290, 134-138 https://doi.org/10.1126/science.290.5489.134
  29. Tong, Q., Tsai, J., and Hotamisligil, G.S. (2003). GATA transcription factors and fat cell formation. Drug News Perspect. 16, 585-588 https://doi.org/10.1358/dnp.2003.16.9.829340
  30. Tsai, F.Y., and Orkin, S.H. (1997). Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89, 3636-3643
  31. Verde, P., Casalino, L., Talotta, F., Yaniv, M., and Weitzman, J.B. (2007). Deciphering AP-1 function in tumorigenesis: fra-ternizing on target promoters. Cell Cycle 6, 2633-2639 https://doi.org/10.4161/cc.6.21.4850
  32. Voelter-Mahlknecht, S., and Mahlknecht, U. (2006). Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int. J. Mol. Med. 17, 59-67
  33. Voelter-Mahlknecht, S., Ho, A.D., and Mahlknecht, U. (2005). FISHmapping and genomic organization of the NAD-dependent histone deacetylase gene, Sirtuin 2 (Sirt2). Int. J. Oncol. 27, 1187-1196
  34. Voelter-Mahlknecht, S., Letzel, S., and Mahlknecht, U. (2006). Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene. Int. J. Oncol. 28, 899-908
  35. Yamashita, K., Discher, D.J., Hu, J., Bishopric, N.H., and Webster, K.A. (2001). Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, and p300/CBP. J. Biol. Chem. 276, 12645-12653 https://doi.org/10.1074/jbc.M011344200
  36. Yang, H., Yang, T., Baur, J.A., Perez, E., Matsui, T., Carmona, J.J., Lamming, D.W., Souza-Pinto, N.C., Bohr, V.A., Rosenzweig, A., et al. (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095-1107 https://doi.org/10.1016/j.cell.2007.07.035
  37. Zhou, H., Zarubin, T., Ji, Z., Min, Z., Zhu, W., Downey, J.S., Lin, S., and Han, J. (2005). Frequency and distribution of AP-1 sites in human genome. DNA Res. 12, 139-150 https://doi.org/10.1093/dnares/12.2.139

피인용 문헌

  1. Mitochondrial Acetylation and Diseases of Aging vol.2011, pp.None, 2009, https://doi.org/10.4061/2011/234875
  2. The SirT3 Divining Rod Points to Oxidative Stress vol.42, pp.5, 2009, https://doi.org/10.1016/j.molcel.2011.05.008
  3. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging vol.444, pp.1, 2012, https://doi.org/10.1042/bj20120030
  4. Sirtuins: from metabolic regulation to brain aging vol.5, pp.None, 2009, https://doi.org/10.3389/fnagi.2013.00036
  5. The Protein Deacetylase SIRT3 Prevents Oxidative Stress-induced Keratinocyte Differentiation vol.288, pp.51, 2009, https://doi.org/10.1074/jbc.m113.472324
  6. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress vol.48, pp.9, 2009, https://doi.org/10.3109/10715762.2014.920956
  7. SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells vol.24, pp.6, 2009, https://doi.org/10.1089/ars.2015.6331
  8. Function of the SIRT 3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease vol.16, pp.1, 2009, https://doi.org/10.1111/acel.12538
  9. Pervasive cis effects of variation in copy number of large tandem repeats on local DNA methylation and gene expression vol.108, pp.5, 2021, https://doi.org/10.1016/j.ajhg.2021.03.016