Quercetin Glycosides from Bark of Maple (Acer komarovii Pojark.)

  • Kwon, Dong-Joo (Dept. of Wood Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Bae, Young-Soo (Dept. of Wood Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • 투고 : 2009.02.27
  • 심사 : 2009.03.16
  • 발행 : 2009.03.25

초록

The chemical constituents of Acer komarovii Pojark. which belongs to Aceraceae has never been reported. The bark of A. komarovii was extracted with 70% aqueous acetone, and the concentrated extract was successively partitioned with n-hexane, dichloromethane, ethyl acetate and $H_2O$. From the ethyl acetate soluble fraction, four compounds were isolated by the repeated Sephadex LH-20 and RP C-18 column chromatography. From the results of spectroscopic methods including FAB-MS, 1D and 2D NMR, the structures of the compounds were determined as quercetin (1), guaijaverin (2), hirsutrin (3) and hyperin (4). These compounds (1-4) have not been reported in this tree yet.

키워드

과제정보

연구 과제 주관 기관 : Korea Forest Service

참고문헌

  1. Lee, C. B. 1985. Illustrated flora of Korea. Sung-Mun Publishing, Seoul, pp. 523
  2. Kim, T. W. 1994. The woody plants of Korea in color. Kyo-Hak Publishing, Seoul, pp. 478
  3. Morikawa, T., J. Tao, I. Toguchida, H. Matsuda, and M. Yoshikawa. 2003. Structures of new cyclic diarylheptanoids and inhibitors of nitric oxide production from Japanese folk medicine Acer nikoense. Journal of Natural Products 66(1): 86-91 https://doi.org/10.1021/np020351m
  4. Akihisa, T., Y. Taguchi, K. Yasukawa, H. Tokuda, H. Akazawa, T. Suzuki, and Y. Kimura. 2006. Acerogenin M, a cyclic diarylheptanoid, and other phenolic compounds from Acer nikoense and their anti-inflammatory and anti-tumor-promoting effects. Chemical & Pharmaceutical Bulletin 54(5):735-739 https://doi.org/10.1248/cpb.54.735
  5. Tung, N. H., Y. Ding, S. K. Kim, K. H. Bae, and Y. H. Kim. 2008. Total peroxyl radical-scavenging capacity of the chemical components from the stems of Acer tegmentosum Maxim. Journal of Agricultural and Food Chemistry 56(22): 10510-10514 https://doi.org/10.1021/jf8020283
  6. Kim, H. J., E. R. Woo, C. G. Shin, and H. K. Park. 1998. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. Journal of Natural Products 61(1): 145-148 https://doi.org/10.1021/np970171q
  7. Kim, J. H., B. C. Lee, J. H. Kim, G. S. Sim, D. H. Lee, K. E. Lee, Y. P. Yun, and H. B. Pyo. 2005. The isolation and antioxidative effects of vitexin from Acer palmatum. Archives of Pharmacal Research 28(2): 195-202 https://doi.org/10.1007/BF02977715
  8. Jin, W. Y., P. T. Thuong, N. D. Su, B. S. Min, K. H. Son, H. W. Chang, H. P. Kim, S. S. Kang, D. E. Sok, and K. H. Bae. 2007. Antioxidant activity of cleomiscosins A and C isolated from Acer okamotoanum. Archives of Pharmacal Research 30(3): 275-281 https://doi.org/10.1007/BF02977606
  9. Dong, L. P., W. Ni, J. Y. Dong, J. Z. Li, C. X. Chen, and H. Y. Liu. 2006. A new neolignan glycoside from the leaves of Acer truncatum. Molecules 11(12): 1009-1014 https://doi.org/10.3390/11121009
  10. Yang, H. K., S. H. Sung, and Y. C. Kim. 2005. Two new hepatoprotective stilbene glycosides from Acer mono leaves. Journal of Natural Products 68(1): 101-103 https://doi.org/10.1021/np0497907
  11. Bate-Smith, E. C. 1978. Systematic aspects of the astringent tannins of Acer species. Phytochemistry 17(11): 1945-1948 https://doi.org/10.1016/S0031-9422(00)88739-7
  12. Bate-Smith, E. C. 1977. Astringent tannins of Acer species. Phytochemistry 16(9): 1421-1426 https://doi.org/10.1016/S0031-9422(00)88795-6
  13. Hatano, T., S. Hattori, Y. Ikeda, T. Shingu, and T. Okuda. 1990. Tannins of Aceraceous plants. Part II. Gallotannins having a 1,5-anhydro-D-glucitol core and some ellagitannins from Acer species. Chemical & Pharmaceutical Bulletin 38(7):1902-1905 https://doi.org/10.1248/cpb.38.1902
  14. Bedgood, D. R., A. G. Bishop, P. D. Prenzler, and K. Robards. 2005. Analytical approaches to the determination of simple biophenols in forest trees such as Acer (maple), Betula (birch), Coniferus, Eucalyptus, Juniperus (cedar), Picea (spruce) and Quevcus (oak). Analyst 130(6): 809-823 https://doi.org/10.1039/b501788b
  15. Luo, W., M. Zhao, B. Yang, G. Shen, and G. Rao. 2009. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chemistry 114(2): 499-504 https://doi.org/10.1016/j.foodchem.2008.09.077
  16. Schraml, J., V. Blechta, J. Sykora, L. Soukupova, P. Curinova, D. Pronek, and J. Lachman. 2005. Characterization of polyphenols from plant materials through their silylation and 29Si NMR spectroscopy- line assignment through 29Si,13C spinspin couplings. Magnetic Resonance in Chemistry 43(10): 829-834 https://doi.org/10.1002/mrc.1638
  17. Schieber, A., P. Hilt, J. Conrad, U. Beifuss, and R. Carle. 2002. Elution order of quercetin glycosides from apple pomace extracts on a new HPLC stationary phase with hydrophilic endcapping. Journal of Separation Science 25: 361-364 https://doi.org/10.1002/1615-9314(20020401)25:5/6<361::AID-JSSC361>3.0.CO;2-D
  18. Iwashina, T., Y. Omori, J. Kitajima, S. Akiyama, T. Suzuki, and H. Ohba. 2004. Flavonoids in translucent bracts of the Himalayan Rheum nobile (Polygonaceae) as ultraviolet shields. Journal of plant research 117(2): 101-107 https://doi.org/10.1007/s10265-003-0134-2
  19. Guvenalp, Z. and L. O. Demirezer. 2005. Flavonol glycosides from Asperula arvensis L. Turkish Journal of Chemistry 29(2): 163-169
  20. Han, J. T., M. H. Bang, O. K. Chun, D. O. Kim, C. Y. Lee, and N. I. Baek. 2004. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Archives of Pharmacal Research 27(4): 390-395 https://doi.org/10.1007/BF02980079
  21. Aritomi, M. 1964. Chemical constituents in Aceraceous plants. II. Flavonoid constituents in leaves. Yakugaku Zasshi 84(4): 360-362 https://doi.org/10.1248/yakushi1947.84.4_360