탄소 나노튜브가 도입된 정공 주입층에 의한 유기발광다이오드의 성능 특성 연구

Performance Characteristics of Organic Electroluminescence Diode Using a Carbon Nanotube-Doped Hole Injection Layer

  • Kang, Hak-Su (Department of Chemical Engineering, Pusan National University) ;
  • Park, Dae-Won (Department of Chemical Engineering, Pusan National University) ;
  • Choe, Youngson (Department of Chemical Engineering, Pusan National University)
  • 투고 : 2009.04.09
  • 심사 : 2009.07.18
  • 발행 : 2009.08.31

초록

유기발광다이오드(OLED)에서 정공 주입층(hole injection layer, HIL)으로 사용되는 poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)에 관능성기가 치환된 MWCNT(multi-wall carbon nanotube)를 도입하여 PEDOT:PSS-MWCNT 나노 복합재 박막을 제조하였다. PEDOT:PSS-MWCNT 박막 층은 ITO 유리 위에 스핀 코팅되어 제조하였으며 FT-IR과 UV-Vis 및 SEM을 이용하여 박막의 투과도 및 개질된 MWCNT 함량에 따른 박막의 모폴로지 특성을 관찰하였다. 또한, ITO/PEDOT:PSS-MWCNT/NPD/$Alq_3$/Al 다층 소자를 제조하여 J-V 및 L-V 특성을 고찰하였다. 산 처리에 의해 관능성기가 도입된 MWCNT는 PEDOT:PSS 용액 내에서 분산성이 확인되었으며, 제조된 박막은 우수한 투과도 특성을 보였다. 다층 소자 특성에서 PEDOT:PSS 층에 개질된 MWCNT 도입으로 MWCNT의 함량이 증가함에 따라 다층 소자의 전류 밀도가 증가됨을 확인하였고, 반면에 소자의 휘도는 급격히 감소하는 특성을 보였다. 이것은 MWCNT에 의하여 전하 이동은 수월하게 하였으나 MWCNT가 가지는 정공을 가두는 성질에 의해 정공 이동도가 저하되었기 때문인 것으로 판단된다.

MWCNT(multi-wall carbon nanotube)-doped PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)), used as a HIL(hole injection layer) material in OLEDs(organic light emitting diodes), was spin-coated on to the ITO glass to form PEDOT:PSS-MWCNT nano composite thin film. Morphology and transparency characteristics of nano composite thin films with respect to the loading percent of MWCNT have been investigated using FT-IR, UV-Vis and SEM. Furthermore, ITO/PEDOT:PSS-MWCNT/NPD/$Alq_3$/Al devices were fabricated, and then J-V and L-V characteristics were investigated. Functional group-incorporated MWCNT was prepared by acid treatment and showed good dispersion property in PEDOT:PSS solution. PEDOT:PSS-MWCNT thin films possessed good transparency property. For multi-layered devices, it was shown that as the loading percent of MWCNT increased, the current density increased but the luminance dramatically decreased. It might be conclusively suggested that the enhanced charge mobility by MWCNT could increase the current density but the hole trapping property of MWCNT could dramatically decrease the hole mobility in the current devices.

키워드

과제정보

연구 과제 주관 기관 : 부산대학교

참고문헌

  1. Tang, C. W. and VanSlyke, S. A., "Organic Electroluminescent Diodes," Appl. Phys. Lett., 51, 913(1987) https://doi.org/10.1063/1.98799
  2. Shaheen, S. E., Brabec, C. J. and Sariciftci, N. S., "2.5% Efficient Organic Plastic Solar Cells," Appl. Phys. Lett., 78(6), 841 (2001) https://doi.org/10.1063/1.1345834
  3. Schultes, S. M., Sullivan, P., Heutz, S., Sanderson, B. M. and Jones, T. S., 'The Role of Molecular Architecture and Layer Composition on the Properties and Performance of CuPc-C60 Photovoltaic Devices,' Mat. Sci. Eng. C 25, 858(2005) https://doi.org/10.1016/j.msec.2005.06.039
  4. Drechsel, J., Männig, B., Kozlowski, F., Gebeyehu, D., Werner, A., Koch, M., Leo, K. and Pfeiffer, M., "High Efficiency Organic Solar Cells Based on Single or Multiple PIN Structures," Thin Solid Films, 451, 515(2004) https://doi.org/10.1016/j.tsf.2003.11.044
  5. Gebeyehu, D., Maennig, B., Drechsel, J., Leo, K. and Pfeiffer, M., "Bulk-Heterojunction Photovoltaic Devices Based on Donor-Acceptor Organic Small Molecule Blends," Sol. Energy Mater. Sol. Cells, 79, 81(2003) https://doi.org/10.1016/S0927-0248(02)00369-0
  6. Tripathi, V., Datta, D. and Samal, G. S., Asha Awasthi, Satyendra Kumar, "Role of Exciton Blocking Layers in Improving Efficiency of Copper Phthalocyanine Based Organic Solar Cells," J. Non-Cryst. Sol., 354, 2901(2008) https://doi.org/10.1016/j.jnoncrysol.2007.10.098
  7. Xue, J., Rand, B. P., Uchida, S. and Forrest, S. R., 'Mixed Donoracceptor Molecular Heterojunctions for Photovoltaic Applications. II. Device Performance,' Appl. Phys. Lett., 98, 124903(2005) https://doi.org/10.1063/1.2142073
  8. Hadziioannou, G. and van Hutten, P. F., Semiconducting Polymers: Chemistry, Physics and Engineering, WILEY-VCH Verlag GmbH, Weinhein, Germany(2000)
  9. Yu, G., Gao, J., Hummelene, J. C., Wudl, F. and Heeger, A. J., "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions," Science, 270, 1789(1995) https://doi.org/10.1126/science.270.5243.1789
  10. Peumans, P., Bulovic' ,V. and Forrest, S. R., "Efficient Photon Harvesting at High Optical Intensities in Ultrathin Organic Double-Heterostructure Photovoltaic Diodes," Appl. Phys. Lett., 76, 2650(2000) https://doi.org/10.1063/1.126433
  11. Burn, P. L., Bradley, D. D. C., Friend, R. H., Halliday, D. A., Holmes, A. B., Jackson, R. W. and Kraft, A., 'Precursor Route Chemistry and Electronic Properties of Poly(p-phenylenevinylene), Poly [(2,5-dimethyl-p-phenylene)vinylene] and Poly[(2,5-dimethoxy-pphenylene) vinylene], ' J. Chem. Soc., 1, 3225(1992)
  12. Askari, S. H., Rughooputh, S. D. and Wudl, F., 'Soluble Substituted- PPV Conducting Polymers: Spectroscopic Studies,' Synth. Met., 29, 129(1989)
  13. Brandon, K. L., Bently, P. G., Bradley, D. D. C. and Dunmur, D. A., "Electroluminescent Properties of a Family of Dialkoxy PPV Derivatives," Synth. Met., 91, 305(1997) https://doi.org/10.1016/S0379-6779(98)80047-7
  14. Jung, E. S., Cho, E.-H. and Chung, P.-J., 'Synthesis of Photoconductive N-unsaturated Alkylcarbazole Derivatives,' J. Korean Ind. Eng. Chem., 9, 548(1998)
  15. Yu, H. Y., Feng, X. D., Grozea, D., Lu, Z. H., Sodhi, R. N. S. and Hor, A. M., "Surface Electronic Structure of Plasma-treated Indium Tin Oxides," Appl. Phys. Lett., 78(17) 2595(2001) https://doi.org/10.1063/1.1367897
  16. Liu, G., Kerr, J. B. and Johnson, S., 'Dark Spot Formation Relative to ITO Surface Roughness for Polyfluorene Devices,' Syn. Met., 144, 1(2004) https://doi.org/10.1016/j.synthmet.2004.01.011
  17. Ohta, H., Orita, M., Hirano, M. and Hosono, H., "Surface Morphology and Crystal Quality of Low Resistive Indium Tin Oxide Grown on Yittria-stabilized Zirconia," J. Appl. Phys., 91, 3547(2002) https://doi.org/10.1063/1.1448873
  18. Leterrier, Y., Medico, L., Demarco, F., Manson, J. A. E., Betz, U., Escola, M. F., et al. 'Mechanical Integrity of Transparent Conductive Oxide Films for Flexible Polymer-based Displays,' Thin Sol Films. 460, 1156(2004) https://doi.org/10.1016/j.tsf.2004.01.052
  19. Aernouts, T., Vanlaeke, P., Geens, W., Poortmans, J., Heremans, P., Borghs, S., et al., "Probing the Subgap Absorption of Photovoltaic Polymer Blends by the Constant Photocurrent Method," Thin Sol Films. 451, 22(2004) https://doi.org/10.1016/j.tsf.2003.11.038
  20. Carter, S. A., Scott, J. C. and Brock, P. J., "Enhanced Luminance in Polymer Composite Light Emitting Devices," Appl. Phys. Lett., 71, 1145(1997) https://doi.org/10.1063/1.119848
  21. Xiao, B. W., Shang, Y. F., Meng, M. and Li, C. N., "Enhancement of Hole Injection with An Ultra-Thin Ag2O Modified Anode in Organic Light-emitting Diodes," Microelectr., 36, 105(2005) https://doi.org/10.1016/j.mejo.2004.11.006
  22. Li, F. S., Chen, Z. J., Liu, C. L. and Gong, Q. H., "Improvement in Performance of Organic Light-emitting Diodes by Adjusting Chargecarrier Mobility in Organic/inorganic Hybrid Hole Transporting Layer," Chem. Phys. Lett., 412, 331(2005) https://doi.org/10.1016/j.cplett.2005.07.011
  23. Chan, I. M. and Hong, F. C., "Improved Performance of the Single-Layer and Double-layer Organic Light Emitting Diodes by Nickel Oxide Coated Indium Tin Oxide Anode," Thin Sol Films, 450, 304(2004) https://doi.org/10.1016/j.tsf.2003.10.022
  24. Xue, J., Rand, B. P., Uchida, S. and Forrest, S. R., "A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell," Adv. Mater. (Weinheim,Ger.), 17, 66(2005) https://doi.org/10.1002/adma.200400617
  25. Oey, C. C., Djurisic, A. B., Kwong, C. Y., Cheung, C. H., Chan, W. K., et al., "Nanocomposite Hole Injection Layer for Organic Device Applications," Thin Sol Films, 492, 253(2005) https://doi.org/10.1016/j.tsf.2005.07.118
  26. Yuan, Y. Y., Han, S., Grozea, D. and Lu, Z. H., "Fullerene-organic Nanocomposite: A Flexible Material Platform for Organic Lightemitting Diodes," Appl. Phys. Lett., 88(9), 093503(2006) https://doi.org/10.1063/1.2180876
  27. Wang, G. F., TaO, X. M. and Wang, R. X., "Fabrication and Characterization of OLEDs Using PEDOT:PSS and MWCNT Nanocomposites," Compos. Sci. Technol., 68, 2837(2008) https://doi.org/10.1016/j.compscitech.2007.11.004
  28. Hirsch, A., "Functionalization of Single-Walled Carbon Nanotubes," Angew. Chem. Int. Ed., 41(11), 1853(2002) https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  29. Tasis, D., Tagmatarchis, N., Georgakilas, V. and Prato, M., 'Soluble Carbon Nanotubes,' Chem. -Eur. J., 9, 4000(2003)
  30. Banerjee, S., Kahn, M. G. C. and Wong, S. S., 'Rational Chemical Strategies for Carbon Nanotube Functionalization,' Chem. -Eur. J., 9, 1898(2003) https://doi.org/10.1002/chem.200204618
  31. Chen, J., Hamon, M. A., Hu, H., et al., "Solution Properties of Single-Walled Carbon Nanotubes," Sci., 282, 95(1998) https://doi.org/10.1126/science.282.5386.95
  32. Shaffer, M. S. P., Fan, X. and Windle, A. H., "Dispersion and Packing of Carbon Nanotubes," Carbon, 36, 1603(1998) https://doi.org/10.1016/S0008-6223(98)00130-4
  33. Woo, H. S., Czerw, R., Webster, S. and Carroll, D. L., "Hole Blocking in Carbon Nanotube-polymer Composite Organic Light-emitting Diodes Based on Poly(m-phenylene vinylene-co-2, 5-dioctoxyp-phenylene vinylene)", Appl. Phys. Lett., 77(9), 1393(2000) https://doi.org/10.1063/1.1290275