DOI QR코드

DOI QR Code

Candidacidal Effects of Rev (11-20) Derived from HIV-1 Rev Protein

  • Lee, Juneyoung (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong Hwan (Christian Academy in Japan) ;
  • Lee, Dong Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2009.08.26
  • Accepted : 2009.09.01
  • Published : 2009.10.31

Abstract

Rev is an essential regulatory protein for HIV-1 replication. Rev (11-20) is known as the significant region regarding the function of a nuclear entry inhibitory signal (NIS) of Rev. In this study, anticandidal effects and mechanism of action of Rev (11-20) were investigated. The result exhibited that Rev (11-20) contained candidacidal activities. To understand target site(s) of Rev (11-20), the intracellular localization of the peptide was investigated. The result showed that Rev (11-20) rapidly accumulated in the fungal cell surface. The cell wall regeneration test also indicated that Rev (11-20) exerted its anticandidal activity to fungal plasma membrane rather than cell wall. The fluorescent study using 1,6-diphenyl-1,3,5-hexatriene (DPH) further confirmed the membrane-disruption mechanism(s) of Rev (11-20). The present study suggests that Rev (11-20) possesses significant potential regarding therapeutic agents for treating fungal diseases caused by Candida species in humans.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Alvarez-Peral, F.J., and Arguelles, J.C. (2000). Changes in external trehalase activity during human serum-induced dimorphic transition in Candida albicans. Res. Microbiol. 151, 837-843 https://doi.org/10.1016/S0923-2508(00)01150-5
  2. Andreu, D., and Rivas, L. (1998). Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433 https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  3. Barra, D., and Simmaco, M. (1995). Amphibian skin: a promising resource for antimicrobial peptides. Trends Biotechnol. 13, 205-209 https://doi.org/10.1016/S0167-7799(00)88947-7
  4. Barrow, D.A., and Lentz, B.R. (1985). Membrane structural domains. Resolution limits using diphenylhexatriene fluorescence decay. Biophys. J. 48, 221-234 https://doi.org/10.1016/S0006-3495(85)83775-9
  5. Bertagnolio, S., de Gaetano Donati, K., Tacconelli, E., Scoppettuolo, G., Posteraro, B., Fadda, G., Cauda, R., and Tumbarello, M. (2004). Hospital-acquired candidemia in HIV-infected patients. Incidence, risk factors and predictors of outcome. J. Chemother. 16, 172-178 https://doi.org/10.1179/joc.2004.16.2.172
  6. Blondelle, S.E., and Houghten, R.A. (1991). Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30, 4671-4678 https://doi.org/10.1021/bi00233a006
  7. Boman, H.G. (1996). Peptide antibiotics: holy or heretic grails of innate immunity? Scand. J. Immunol. 43, 475-482 https://doi.org/10.1046/j.1365-3083.1996.d01-76.x
  8. Canton, E., Peman, J., Gobernado, M., Viudes, A., and Espinel- Ingroff, A. (2004). Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob. Agents Chemother. 48, 2477-2482 https://doi.org/10.1128/AAC.48.7.2477-2482.2004
  9. Edmond, M.B., Wallace, S.E., McClish, D.K., Pfaller, M.A., Jones, R.N., and Wenzel, R.P. (1999). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29, 239-244 https://doi.org/10.1086/520192
  10. Fridkin, S.K., and Jarvis, W.R. (1996). Epidemiology of nosocomial fungal infections. Clin. Microbiol. Rev. 9, 499-511
  11. Ganz, T., and Lehrer, R.I. (1998). Antimicrobial peptides of vertebrates. Curr. Opin. Immunol. 10, 41-44 https://doi.org/10.1016/S0952-7915(98)80029-0
  12. Hoffman, H.L., Ernst, E.J., and Klepser, M.E. (2000). Novel triazole antifungal agents. Expert Opin. Investig. Drugs 9, 593-605 https://doi.org/10.1517/13543784.9.3.593
  13. Hultmark, D. (2003). Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12-19 https://doi.org/10.1016/S0952-7915(02)00005-5
  14. Jung, H.J., Park, Y., Hahm, K.S., and Lee, D.G. (2006). Biological activity of Tat (47-58) peptide on human pathogenic fungi. Biochem. Biophys. Res. Commun. 345, 222-228 https://doi.org/10.1016/j.bbrc.2006.04.059
  15. Jung, H.J., Park, Y., Sung, W.S., Suh, B.K., Lee, J., Hahm, K.S., and Lee, D.G. (2007). Fungicidal effect of pleurocidin by membraneactive mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta-Biomembr. 1768, 1400-1405 https://doi.org/10.1016/j.bbamem.2007.02.024
  16. Jungblut, P., and Thiede, B. (1997). Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom. Rev. 16, 145-162 https://doi.org/10.1002/(SICI)1098-2787(1997)16:3<145::AID-MAS2>3.0.CO;2-H
  17. Kalland, K.H., Szilvay, A.M., Brokstad, K.A., Saetrevik, W., and Haukenes, G. (1994). The human immunodeficiency virus type 1 Rev protein shuttles between the cytoplasm and nuclear compartments. Mol. Cell. Biol. 14, 7436-7444 https://doi.org/10.1128/MCB.14.11.7436
  18. Kubota, S., and Pomerantz, R.J. (1998). A cis-acting peptide signal in human immunodeficiency virus type I Rev which inhibits nuclear entry of small proteins. Oncogene 16, 1851-1861 https://doi.org/10.1038/sj.onc.1201738
  19. Ladokhin, A.S., and White, S.H. (1999). Folding of amphipathic alphahelices on membranes: energetics of helix formation by melittin. J. Mol. Biol. 285, 1363-1369 https://doi.org/10.1006/jmbi.1998.2346
  20. Lee, D.G., Park, Y., Kim, P.I., Jeong, H.G., Woo, E.R., and Hahm, K.S. (2002). Influence on the plasma membrane of Candida albicans by HP (2-9)-magainin 2 (1-12) hybrid peptide. Biochem. Biophys. Res. Commun. 297, 885-889 https://doi.org/10.1016/S0006-291X(02)02230-1
  21. Lee, J.Y., Lee, S.A., Kim, J.K., Chae, C.B., and Kim, Y. (2009a). Interaction models of substrate peptides and beta-secretase studied by NMR spectroscopy and molecular dynamics simulation. Mol. Cells 27, 651-656 https://doi.org/10.1007/s10059-009-0086-z
  22. Lee, J., Park, C., Park, S.C., Woo, E.R., Park, Y., Hahm, K.S., and Lee, D.G. (2009b). Cell-selectivity-membrane phospholipids relationship of the antimicrobial effects shown by pleurocidin enantiomeric peptides. J. Pept. Sci. 15, 601-606 https://doi.org/10.1002/psc.1157
  23. McLain, N., Ascanio, R., Baker, C., Strohaver, R.A., and Dolan, J.W. (2000). Undecylenic acid inhibits morphogenesis of Candida albicans. Antimicrob. Agents Chemother. 44, 2873-2875 https://doi.org/10.1128/AAC.44.10.2873-2875.2000
  24. Merrifield, B. (1986). Solid phase synthesis. Science 232, 341-347 https://doi.org/10.1126/science.3961484
  25. Meyer, B.E., and Malim, M.H. (1994). The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev. 8, 1538-1547 https://doi.org/10.1101/gad.8.13.1538
  26. Pollard, V.W., and Malim, M.H. (1998). The HIV-1 Rev protein. Annu. Rev. Microbiol. 52, 491-532 https://doi.org/10.1146/annurev.micro.52.1.491
  27. Rangel-Frausto, M.S., Wiblin, T., Blumberg, H.M., Saiman, L., Patterson, J., Rinaldi, M., Pfaller, M., Edwards, J.E.Jr., Jarvis, W., Dawson, J., et al. (1999). National epidemiology of mycoses survey (NEMIS): variations in rates of bloodstream infections due to Candida species in seven surgical intensive care units and six neonatal intensive care units. Clin. Infect. Dis. 29, 253-258 https://doi.org/10.1086/520194
  28. Richard, N., Iacampo, S., and Cochrane, A. (1994). HIV-1 Rev is capable of shuttling between the nucleus and cytoplasm. Virology 204, 123-131 https://doi.org/10.1006/viro.1994.1516
  29. Soczo, G., Kardos, G., McNicholas, P.M., Balogh, E., Gergely, L., Varga, I., Kelentey, B., and Majoros, L. (2007). Correlation of posaconazole minimum fungicidal concentration and time kill test against nine Candida species. J. Antimicrob. Chemother. 60, 1004-1009 https://doi.org/10.1093/jac/dkm350
  30. Sung, W.S., Lee, I.S., and Lee, D.G. (2007). Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol. 17, 1797-1804
  31. Sung, W.S., Lee, J., and Lee, D.G. (2008). Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass. Biochem. Biophys. Res. Commun. 371, 551-555 https://doi.org/10.1016/j.bbrc.2008.04.107
  32. Vincent, M., England, L.S., and Trevors, J.T. (2004). Cytoplasmic membrane polarization in Gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline. Biochim. Biophys. Acta 1672, 131-134 https://doi.org/10.1016/j.bbagen.2004.03.005
  33. Wolff, B., Cohen, G., Hauber, J., Meshcheryakova, D., and Rabeck, C. (1995). Nucleocytoplasmic transport of the Rev protein of human immunodeficiency virus type 1 is dependent on the activation domain of the protein. Exp. Cell Res. 217, 31-41 https://doi.org/10.1006/excr.1995.1060

Cited by

  1. Anti-Candida Property of a Lignan Glycoside Derived from Styrax japonica S. et Z. via Membrane-Active Mechanisms vol.29, pp.6, 2010, https://doi.org/10.1007/s10059-010-0072-5
  2. Yeast and the AIDS Virus: The Odd Couple vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/549020