Catalytic Performance of V-KIT-6 for the Oxidation of Styrene

스티렌 산화반응에 대한 V-KIT-6의 촉매특성 고찰

  • Kim, Sang-Yun (Division of Chemical Engineering/Research Institute of Industrial Technology(RIIT), Pusan National University) ;
  • Jermy, Balasamy R. (Division of Chemical Engineering/Research Institute of Industrial Technology(RIIT), Pusan National University) ;
  • Bineesh, Kanattukara V. (Division of Chemical Engineering/Research Institute of Industrial Technology(RIIT), Pusan National University) ;
  • Lim, Dong-Ok (Seki Arkema Co., Ltd.) ;
  • Kim, Kyung-Hoon (Division of Chemical Engineering/Research Institute of Industrial Technology(RIIT), Pusan National University) ;
  • Park, Dae-Won (Division of Chemical Engineering/Research Institute of Industrial Technology(RIIT), Pusan National University)
  • 김상윤 (부산대학교 응용화학공학부 생산기술연구소) ;
  • ;
  • ;
  • 임동옥 (세기아케마 주식회사) ;
  • 김경훈 (부산대학교 응용화학공학부 생산기술연구소) ;
  • 박대원 (부산대학교 응용화학공학부 생산기술연구소)
  • Received : 2009.02.03
  • Accepted : 2009.03.20
  • Published : 2009.06.30

Abstract

The direct incorporation of vanadium into the three-dimensional(3-D) cubic Ia3d mesostructure designated as V-KIT-6 was carried out hydrothermally using a Pluronic P123 and n-butanol as the structure-directing mixture, tetraethylorthosilicate(TEOS) as the silica source and $NH_4VO_3$ as the vanadium source. The obtained V-KIT-6 showed a very high specific surface area ${\sim}1,000m^2/g$ with tunable pore diameters in narrow distribution of sizes ~6.0 nm. The coordination and nature of V sites in V-KIT-6 are characterized by $^{51}V$-spin-echo NMR analysis. The calcined V-KIT-6 materials showed excellent catalytic activity in the direct oxidation of styrene using tert-butyl hydroperoxide(TBHP) as an oxidant.

바나듐이 담지된 3차원 입방구조의 V-KIT-6를 Pluronic P123 공중합체를 구조형성제로 사용하고, 부탄올을 보조 계면활성제로 사용하여 TEOS와 $NH_4VO_3$로부터 수열합성법으로 제조하였다. 제조한 V-KIT-6는 좁은 기공분포(~6.0 nm)를 가지고 넓은 비표면적(${\sim}1,000m^2/g$)을 보여주었다. V-KIT-6에서 V의 배위 특성 등은 $^{51}V$ 스핀 공명 NMR과 ESR을 이용하여 분석하였다. 제조된 V-KIT-6는 테트라부틸 하이드로 퍼옥사이드(TBHP)를 산화제로 사용한 스티렌의 직접산화반응에서 우수한 촉매활성을 나타내었다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. Zhang, W., Wang, J., Tanev, P. T. and Pinnavaia, T., 'Catalytic Hydroxylation of Benzene Over Transition-metal Substituted Hexagonal Mesoporous Silicas,' J. Chem. Soc., Chem. Commun., 8, 979-980(1996) https://doi.org/10.1039/CC9960000979
  2. Reddy, K. M., Moudrakaski, I. and Sayari, A. J., 'Synthesis of Mesoporous Vanadium Silicate Molecular Sieves,' J. Chem. Soc., Chem. Commun., 9, 1059-1060(1994) https://doi.org/10.1039/C39940001059
  3. Gontier, S. and Tuel, A., "Characterization of Vanadium-containing Mesoporous Silicas," Microporous Mater., 5, 161-171(1995) https://doi.org/10.1016/0927-6513(95)00057-G
  4. Luan, Z., Maes, E. M., Van der Heide, Paul A. W., Zhao, D., Roman, S. Czernuszewicz, and Kevan, L., "Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15," Chem. Mater., 11(12), 3680-3686(1999) https://doi.org/10.1021/cm9905141
  5. Luan, Z., Bae, J. Y. and Kevan, L., "Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-Alkylphenothiazines," Chem. Mater., 12, 3202-3207(2000) https://doi.org/10.1021/cm000318q
  6. Gao, F., Zhang, Y., Wan, H., Kong, Y., Wu, X., Dong, L., Li, B. and Chen, Y., "The States of Vanadium Species in V-SBA-15 Synthesized Under Different pH Values," Micro. Meso. Mater., 110(2-3), 508-516(2007) https://doi.org/10.1016/j.micromeso.2007.06.041
  7. Murugavel, R. and Roesky, H. W., "Titanosilicates: Recent Developments in Synthesis and Use as Oxidation Catalysts," Angew. Chem., Int. ed., 36(5), 477-479(1997) https://doi.org/10.1002/anie.199704771
  8. Fan, J., Yu, C., Wang, L., Tu, B., Zhao, D., Sakamoto, Y. and Terasaki, O., "Mesotunnels on the Silica Wall of Ordered SBA- 15 to Generate Three-Dimensional Large-Pore Mesoporous Networks," J. Am. Chem. Soc., 123(48), 12113-12114(2001) https://doi.org/10.1021/ja011564l
  9. Sakamoto, Y., Kaneda, M., Terasaki, O., Zhao, D.Y., Kim, J. M., Stucky, G. D., Shin, H. Y. and Ryoo, R., "Direct Imaging of the Pores and Cages of Three-dimensional Mesoporous Materials," Nature, 408, 449-453(2000) https://doi.org/10.1038/35044040
  10. Morey, M. S., Davidson, A. and Stukcy, G. D., "Silica-based, Cubic Mesostructures: Synthesis, Characterization and Relevance for Catalysis," J. Porous Mater., 5, 195-204(1998) https://doi.org/10.1023/A:1009626103498
  11. Kim, T.W., Kleitz, F., Paul, B. and Ryoo, R., "MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer Butanol Water System," J. Am. Chem. Soc., 127, 7601-7610(2005) https://doi.org/10.1021/ja042601m
  12. Chen, Y.-W. and Lu, Y.-H., "Characteristics of V-MCM-41 and Its Catalytic Properties in Oxidation of Benzene, " Ind. Eng. Chem. Res., 38(5), 1893-1903(1999) https://doi.org/10.1021/ie980665y
  13. Lim, S. and Haller, G. L., "Preparation of Highly Ordered Vanadium- substituted MCM-41. Stability and Acidic Properties," J. Phys. Chem. B., 106(33), 8437-8447(2002) https://doi.org/10.1021/jp0209796
  14. Du, G., Lim, S., Yang, Y., Wang, C., Pfefferle, L. and Haller, G. L., "Catalytic Performance of Vanadium Incorporated MCM-41 Catalysts for the Partial Oxidation of Methane to Formaldehyde," Appl. Catal. A. Gen., 302(1), 48-61(2006) https://doi.org/10.1016/j.apcata.2005.12.013
  15. Dapurkar, S. E., Sakthivel, A. and Selvam, P., "Mesoporous VMCM-41: Highly Efficient and Remarkable Catalyst for Selective Oxidation of Cyclohexane to Cyclohexanol," J. Mol. Catal. A. Chem., 223(1-2), 241-250(2004) https://doi.org/10.1016/j.molcata.2003.10.067
  16. Selvam, P. and Dapurkar, S. E., "Catalytic Activity of Highly Ordered Mesoporous V-MCM-48," Appl. Catal. A. Gen., 276(1-2), 257-265(2004) https://doi.org/10.1016/j.apcata.2004.08.012
  17. Jermy, B. R., Kim, S. Y., Bineesh, K. V., Selvaraj, M. and Park, D. W., 'Direct Incorporation of High Vanadium Content into Three Dimensional KIT-6 : 1. Optimization of Synthesis Conditions,' Korean J. Chem. Eng., submitted(2008) https://doi.org/10.2478/s11814-009-0199-2
  18. Jermy, B. R., Cho, D. R., Bineesh, K. V., Kim, S. Y. and Park, D. W., "Direct Synthesis of Vanadium Incorporated Three-dimensional KIT-6: A Systematic Study in the Oxidation of Cyclohexane," Micro. Meso. Mater., 115(3), 281-292(2008) https://doi.org/10.1016/j.micromeso.2008.01.040
  19. Mathieu, M., Van Der Voort, P., Weckhuysen, B. M., Rao, R. R., Catana, G., Schoonheydt, R. A. and Vansant, E. F., "Vanadium- Incorporated MCM-48 Materials: Optimization of the Synthesis Procedure and an in-situ Spectroscopic Study of the Vanadium Species," J. Phys. Chem. B., 105(17) 3393-3399(2001) https://doi.org/10.1021/jp003126r
  20. Centi, G., Perathoner, S., Trifiro, F., Aboukais, A., Aissi, C. F. and Guelton, M., "Physicochemical Characterization of V-Silicalite," J. Phys. Chem., 96(6), 2617-29(1992) https://doi.org/10.1021/j100185a042
  21. Eckert, H. and Wachs, I. E., "Solid-State Vanadium-51 NMR Structural Studies on Supported Vanadium(V) Oxide Catalysts: Vanadium Oxide Surface Layers on Alumina and Titania Supports," J. Phys. Chem., 93(18), 6796-6805(1989) https://doi.org/10.1021/j100355a043
  22. Tuel, A. and Ben Taarit, Y., "Synthesis, Characterization and Catalytic Properties of Vanadium Silicates with a ZSM-48 Structure," Appl. Catal. A. Gen., 102, 201(1993) https://doi.org/10.1016/0926-860X(93)80229-J