폴리(스티렌-설파디아진) 공중합체를 이용한 항균 나노섬유 제조

Construction of Antibacterial Electrospun Nanofiber from Poly(styrene-co-sulfadiazine) via Electrospinning

  • 황석호 (한국생산기술연구원 청정생산기술연구부) ;
  • 안경환 (한국생산기술연구원 청정생산기술연구부) ;
  • 차희철 (한국생산기술연구원 경기기술지원센터) ;
  • 김정열 (한국생산기술연구원 청정생산기술연구부) ;
  • 황홍구 (숭실대학교 환경.화학공학과) ;
  • 허완수 (숭실대학교 환경.화학공학과) ;
  • 이상원 (숭실대학교 환경.화학공학과)
  • Hwang, Seok-Ho (Green Chemistry & Engineering R&D Department, Korea Institute of Industrial Technology) ;
  • Ahn, Kyung-Hwan (Green Chemistry & Engineering R&D Department, Korea Institute of Industrial Technology) ;
  • Cha, Heechul (Gyeonggi Technology Service Division, Korea Institute of Industrial Technology) ;
  • Kim, Jeong-Yeol (Green Chemistry & Engineering R&D Department, Korea Institute of Industrial Technology) ;
  • Hwang, Hong-Gu (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Huh, Wansoo (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Lee, Sangwon (Department of Chemical & Environmental Engineering, Soongsil University)
  • 투고 : 2009.02.17
  • 심사 : 2009.05.26
  • 발행 : 2009.08.10

초록

항균효과가 있는 sulfadiazine을 포함하는 아크릴형 단량체를 축합반응으로 합성하였으며, 합성된 아크릴형 단량체와 스티렌 단량체를 함께 라디칼 공중합으로 poly(styrene-co-sulfadiazine)을 합성하였다. 중합체의 중량평균분자량이 27800이었으며, 화학구조와 sulfadiazine과 스티렌 단량체간의 몰비는 핵자기공명분석을 통하여 확인하였다. 이 중합체를 이용하여 15 kV 하에서 전기방사를 수행하여 나노섬유 멤브레인을 제조하였으며, 멤브레인을 구성하고 있는 섬유의 직경은 약 500~800 nm 크기를 가졌다. 제조된 멤브레인의 항균성을 평가하기 위하여 양성균 S. Aureus와 음성균 E. Coli를 사용하였으며, 균주의 colony의 개수 증감으로 항균성을 평가하였다.

In this study, sulfadiazine acrylamide monomer was synthesized by the reaction of sulfadiazine, known as an antibiotic substance, with acryloyl chloride. The monomer was characterized by $^1H-NMR$, and $^{13}C-NMR$. Using the synthesized sulfadiazine acrylamide monomer and styrene monomer, a copolymer, poly(styrene-co-sulfadiazine), was obtained by the free radical copolymerization and characterized by $^1H-NMR$, GPC, DSC and TGA. The copolymer nanofibers web has been successfully prepared by electrospinning technique under DMF solution. The diameter of the nanofibers was in the range between 500 and 800 nm. Antibacterial activity of the nanofiber web was evaluated utilizing the colony counting method against Staphylococcus aureus and Escherichia coli.

키워드

과제정보

연구 과제 주관 기관 : 한국생산기술연구원

참고문헌

  1. G. Domagk, Deutsche Med. Wchnschr., 61, 250 (1935) https://doi.org/10.1055/s-0028-1129486
  2. J. Trefouel, Mme. J. Trefouel, F. Nitti, and D. Bovet, Compt. Rend. Soc. de Biol., 120, 756 (1935)
  3. T. H. Maren, Annu. Rev. Pharmacol. Toxicol., 16, 309 (1976) https://doi.org/10.1146/annurev.pa.16.040176.001521
  4. J. E. Toth, G. B. Grindey, W. J. Ehlhardt, J. E. Ray, G. B. Boder, J. R. Bewley, K. K. Klingerman, S. B. Gates, S. M. Rinzel, R. M. Schultz, L. C. Weir, and J. F. Worzalla., J. Med. Chem., 40, 1018 (1997) https://doi.org/10.1021/jm960673l
  5. J. C. Medina, D. Roche, B. Shan, R. M. Learned, W. P. Frankmoelle, D. L. Clark, T. R. Rosen, and J. C. Jaen, Bioorg. Med. Chem. Lett., 9, 1843 (1999) https://doi.org/10.1016/S0960-894X(99)00276-0
  6. H. Yoshino, N. Ueda, J. Niijima, H. Sugumi, Y. Kotake, N. Koyanagi, K. Yoshimatsu, M. Asada, and T. Watanabe, J. Med. Chem., 35, 2496 (1992) https://doi.org/10.1021/jm00091a018
  7. T. Owa, H. Yoshino, and T. Okauchi, K. Yoshimatsu, Y. Ozawa, N. H. Sugi, T. Nagasu, N. Koyanagi, and K. Kitoh, J. Med. Chem., 42, 3789 (1999) https://doi.org/10.1021/jm9902638
  8. N. Calvert, T. A. Connors, and W. C. J. Ross, Eur. J. Cancer, 4, 627 (1968) https://doi.org/10.1016/0014-2964(68)90047-9
  9. J. B. Wright, K. Lam, D. Hansen, and R. E. Burrell, Am. J. Infect. Control, 27, 344 (1999) https://doi.org/10.1016/S0196-6553(99)70055-6
  10. G. D. Winter, Nature, 193, 293 (1962) https://doi.org/10.1038/193293a0
  11. V. Falanga, Dermatol. Clinics, 11, 667 (1993)
  12. I. V. Yannas and J. F. Burke, J. Biomed. Mater. Res., 14, 65 (1980) https://doi.org/10.1002/jbm.820140108
  13. N. Dagalakis, J. Flink, P. Stasikelis, J. F. Burke, and I. V. Yannas, J. Biomed. Mater. Res., 14, 511 (1980) https://doi.org/10.1002/jbm.820140417
  14. K. Matsida, S. Suzuki, N. Isshikin, K. Yoshioka, R. Wada, S. H. Hyun, and Y. Ikada, Biomaterials, 13, 119 (1992) https://doi.org/10.1016/0142-9612(92)90007-B
  15. P. K. Baumgarten, J. Colloid Interface Sci., 36, 71 (1971) https://doi.org/10.1016/0021-9797(71)90241-4
  16. R. Jaeger, H. Schoenherr, and G. J. Vansco, Macromolecules, 29, 7634 (1996) https://doi.org/10.1021/ma9610673
  17. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996) https://doi.org/10.1088/0957-4484/7/3/009
  18. D. H. Reneker, A. L. Yarin, H. Fong, and S. J. Koombhongse, J. Appl. Phys., 87, 4531 (2000) https://doi.org/10.1063/1.373532
  19. G. I. Taylor, Proc. R. Soc. London Ser. A, 313, 453 (1969) https://doi.org/10.1098/rspa.1969.0205
  20. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer, 42, 261 (2001) https://doi.org/10.1016/S0032-3861(00)00250-0
  21. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  22. H. Hou and D. H. Reneker, Adv. Mater., 16, 69 (2004) https://doi.org/10.1002/adma.200306205
  23. P. Gibson, H. Schreuder-Gibson, and D. Rivin, Colloids Surf. A, 187, 469 (2001) https://doi.org/10.1016/S0927-7757(01)00616-1
  24. M. M. Bergshoef and G. J. Vancso, Adv. Mater., 11, 1362 (1999) https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO;2-X
  25. X. Wang, C. Drew, S.-H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, Nano Lett., 2, 1273 (2002) https://doi.org/10.1021/nl020216u
  26. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002) https://doi.org/10.1002/jbm.10167
  27. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002) https://doi.org/10.1021/bm015533u
  28. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Controlled Release, 81, 57 (2002) https://doi.org/10.1016/S0168-3659(02)00041-X
  29. J. Guo, L. Li, Y. Ti, and J. Zhu, Express Polym. Lett., 1, 166 (2007) https://doi.org/10.3144/expresspolymlett.2007.26
  30. S.-I. Kim and J.-W. Na, J. of Korean Ind. Eng. Chem., 5, 917 (1995)
  31. X. Fu and S. Qutubuddin, Polymer, 42, 807 (2001) https://doi.org/10.1016/S0032-3861(00)00385-2
  32. L. H. Sperling, Introduction to Physical Polymer Science, 4th Ed., John Wiley & Sons, New Jersey (2006)
  33. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, Polymer, 44, 1287 (2003) https://doi.org/10.1016/S0032-3861(02)00820-0
  34. A. L. Andrady, Science and Technology of Polymer Nanofibers, John Wiley & Sons, New Jersey (2008)
  35. C. Pattamaprom, W. Hongrojjanawiwat, P. Koombhongse, P. Supaphol, T. Jarusuwannapoo, and R. Rangkupan, Marcromol, Mater. Eng., 291, 840 (2006) https://doi.org/10.1002/mame.200600135
  36. L. Wannatong, A. Sirivat, and P. Supaphol, Polym. Int., 53, 1851 (2004) https://doi.org/10.1002/pi.1599
  37. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer, 42, 261 (2001) https://doi.org/10.1016/S0032-3861(00)00250-0
  38. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  39. H. J. Sim and S. H. Lee, J. Korean Fiber Soc., 41, 414 (2004)
  40. C. U. Pittman, Jr., G. A. Stahl, and H. Winters, J. Coat. Technol., 50, 49 (1978)
  41. F. Ascoli, G. Casinit, M. Ferappi, and E. Tubaro, J. Med. Chem., 10, 97 (1967) https://doi.org/10.1021/jm00313a022
  42. U. S. Patent, 4,426,464 (1984)
  43. G. Lancini, F. Parenti, and G. G. Gallo, Antibiotics: A Multidisciplinary Approach, 3rd Ed., Plenum Press, New York (1995)