DOI QR코드

DOI QR Code

Complete Mitochondrial Genome Sequence of the Yellow-Spotted Long-Horned Beetle Psacothea hilaris (Coleoptera: Cerambycidae) and Phylogenetic Analysis among Coleopteran Insects

  • Kim, Ki-Gyoung (Biological Resources Research Department, National Institute of Biological Resources) ;
  • Hong, Mee Yeon (College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Min Jee (College of Agriculture and Life Sciences, Chonnam National University) ;
  • Im, Hyun Hwak (College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Man Il (College of Agriculture and Life Sciences, Chonnam National University) ;
  • Bae, Chang Hwan (Biological Resources Research Department, National Institute of Biological Resources) ;
  • Seo, Sook Jae (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University) ;
  • Lee, Sang Hyun (College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Iksoo (College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2008.12.22
  • 심사 : 2009.03.04
  • 발행 : 2009.04.30

초록

We have determined the complete mitochondrial genome of the yellow-spotted long horned beetle, Psacothea hilaris (Coleoptera: Cerambycidae), an endangered insect species in Korea. The 15,856-bp long P. hilaris mitogenome harbors gene content typical of the animal mitogenome and a gene arrangement identical to the most common type found in insect mitogenomes. As with all other sequenced coleopteran species, the 5-bp long TAGTA motif was also detected in the intergenic space sequence located between $tRNA^{Ser}$(UCN) and ND1 of P. hilaris. The 1,190-bp long non-coding A+T-rich region harbors an unusual series of seven identical repeat sequences of 57-bp in length and several stretches of sequences with the potential to form stem-and-loop structures. Furthermore, it contains one $tRNA^{Arg}$-like sequence and one $tRNA^{Lys}$-like sequence. Phylogenetic analysis among available coleopteran mitogenomes using the concatenated amino acid sequences of PCGs appear to support the sister group relationship of the suborder Polyphaga to all remaining suborders, including Adephaga, Myxophaga, and Archostemata. Among the two available infraorders in Polyphaga, a monophyletic Cucujiformia was confirmed, with the placement of Cleroidea as the basal lineage for Cucujiformia. On the other hand, the infraorder Elateriformia was not identified as monophyletic, thereby indicating that Scirtoidea and Buprestoidea are the basal lineages for Cucujiformia and the remaining Elateriformia.

키워드

과제정보

연구 과제 주관 기관 : National Institute of Biological Resources

참고문헌

  1. Abascal, F., Zardoya, R., and Posada, D. (2005). ProTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104-2105 https://doi.org/10.1093/bioinformatics/bti263
  2. Adachi, J., and Hasegawa, M. (1996). Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42, 459-468 https://doi.org/10.1007/BF02498640
  3. Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19, 716-723 https://doi.org/10.1109/TAC.1974.1100705
  4. Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijin, M.H.L., Droujn, A.R.J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature 290, 457-465 https://doi.org/10.1038/290457a0
  5. Arnoldi, F.G., Ogoh, K., Ohmiya, Y., and Viviani, V.R. (2007). Mitochondrial genome sequence of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae): mitochondrial genes utility to investigate the evolutionary history of Coleoptera and its bioluminescence. Gene 405, 1-9 https://doi.org/10.1016/j.gene.2007.07.035
  6. Avise, J.C. (1994). Molecular markers, natural history and evolution (New York: Champman & Hall)
  7. Bae, J.S., Kim, I., Sohn, H.D., and Jin, B.R. (2004). The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol. Phylogenet. Evol. 32, 978-985 https://doi.org/10.1016/j.ympev.2004.03.009
  8. Beutel, R.G. (1995). Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga) based on larval characters. J. Zool. Syst. Evol. Res, 33, 145-171 https://doi.org/10.1111/j.1439-0469.1995.tb00969.x
  9. Beutel, R.G. (1997). Uber phylogenese und evolution der Coleoptera (Insecta), insbesondere der Adephaga. Verh. Naturwiss. Ver. Hamburg 31, 1-164
  10. Beutel, R., and Haas, F. (2000). Phylogenetic relationships of the suborders of Coleoptera (Insecta). Cladistics 16, 103-141 https://doi.org/10.1111/j.1096-0031.2000.tb00350.x
  11. Bocakova, M., Bocak, L., Hunt, T., Teravainen, M., and Vogler, A.P. (2007). Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics 23, 477-496 https://doi.org/10.1111/j.1096-0031.2007.00164.x
  12. Boore, J.L. (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780 https://doi.org/10.1093/nar/27.8.1767
  13. Brehm, A., Harris, D.J., Hernandez, M., Cabrera, V.M., Larruga, J.M., Pinto, F.M., and Gonzalez, A.M. (2001). Structure and evolution of the mitochondrial DNA complete control region in the Drosophila subobscura subgroup. Insect Mol. Biol. 10, 573-578 https://doi.org/10.1046/j.0962-1075.2001.00295.x
  14. Brodsky, L.I., Vasiliev, A.V., Kalaidzidis, Y.L., Osipov, Y.S., Tatuzov, A.R.L., and Feranchuk, S.I. (1992). GeneBee: the program package for biopolymer structure analysis. Dimacs 8, 127-139
  15. Cameron, S.L., and Whiting, M.F. (2008). The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408, 112-123 https://doi.org/10.1016/j.gene.2007.10.023
  16. Cantatore, P., Gadaleta, M.N., Roberti, M., Saccone, C., and Wilson, A.C. (1987). Duplication and remodeling of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329, 853-855 https://doi.org/10.1038/329853a0
  17. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic tool. Curr. Opin. Genet. Dev. 8, 668-674
  18. Caterino, M.S., Shull, V.L., Hammond, P.M., and Vogler, A.P. (2002). Basal relationships of Coleoptera inferred from 18S rDNA sequences. Zool. Scr. 31, 41-49 https://doi.org/10.1046/j.0300-3256.2001.00092.x
  19. Caterino, M.S., Hunt, T., and Vogler, A.P. (2005). On the constitution and phylogeny of Staphyliniformia (Insecta: Coleoptera). Mol. Phylogenet. Evol. 34, 655-672 https://doi.org/10.1016/j.ympev.2004.11.012
  20. Cha, S.Y., Yoon, H.J., Lee, E.M., Yoon, M.H., Hwang, J.S., Jin, B.R., Han, Y.S., and Kim, I. (2007). The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae). Gene 392, 206-220 https://doi.org/10.1016/j.gene.2006.12.031
  21. Crozier, R.H., and Crozier, Y.C. (1993). The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133, 97-117
  22. Dowton, M., Castro, L.R., Campbell, S.L., Bargon, S.D., and Austin, A.D. (2003). Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. J. Mol. Evol. 56, 517-526 https://doi.org/10.1007/s00239-002-2420-3
  23. Fauron, C.M.R., and Wolstenholme, D.R. (1980). Extensive diversity among Drosophila species with respect to nucleotide sequences within the adenine+thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res. U, 2439-2452 https://doi.org/10.1093/nar/8.11.2439
  24. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791 https://doi.org/10.2307/2408678
  25. Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294-299
  26. Friedrich, M., and Muquim, N. (2003). Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Trivolium castanaeum Mol. Phylogenet. Evol. 26, 502-512 https://doi.org/10.1016/S1055-7903(02)00335-4
  27. Guindon, S., Lethiec, F., Duroux, P., and Gascuel, O. (2005). PHYML: online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33, W557-559 https://doi.org/10.1093/nar/gki352
  28. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95-98
  29. Hebert, P.D.A., Cywinska, A., Ball, S.L., and deWaard, J.R. (2003). Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313-322 https://doi.org/10.1098/rspb.2002.2218
  30. Hong, M.Y., Lee, E.M., Jo, Y.H., Park, H.C., Kim, S.R., Hwang, J.S., Jin, B.R., Kang, P.D., Kim, K.-G., Han, Y.S., et al. (2008). Complete nucleotide sequence and organization of the mito-genome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene 413, 49-57 https://doi.org/10.1016/j.gene.2008.01.019
  31. Hong, M.Y., Jeong, H.C., Kim, M.J., Jeong, H.U., Lee, S.H., and Kim, I. (2009). Complete mitogenome sequence of the jewel beetle, chrysochroa fulgidissma (Coleoptera: Buprestidae). Mitochondrial DNA. (in press) (DOI 10.1080/19401730802644978)
  32. Huelsenbeck, J.P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755 https://doi.org/10.1093/bioinformatics/17.8.754
  33. Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., St. John, O., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., Caterino, M.S., et al. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 1913-1916 https://doi.org/10.1126/science.1146954
  34. Hwang, U.W., Friedrich, M., Tautz, D., Park, C.J., and Kim, W. (2001). Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413, 154-157 https://doi.org/10.1038/35093090
  35. Inohira, K., Hara, T., and Matsuura, E.T. (1997). Nucleotide sequence divergence in the A+T-rich region of mitochondrial DNA in Drosophila simulans and Drosophila mauritiana. Mol. Biol. Evol. 14, 814-822 https://doi.org/10.1093/oxfordjournals.molbev.a025822
  36. Joyce, D.A., and Pullin, A.S. (2004). Using genetics to inform reintroduction strategies for the chequered skipper butterfly (Carterocephalus Palaemon, Pallas) in England. J. Insect Conserv. 8, 69-74 https://doi.org/10.1023/B:JICO.0000027510.59074.16
  37. Kim, I., Lee, E.M., Seol, K.Y., Yun, E.Y., Lee, Y.B., Hwang, J.S., and Jin, B.R. (2006). The mitochondrial genome of the Korean hairstreak, Coreana raphaelis(Lepidoptera: Lycaenidae). Insect Mol. Biol. 15, 217-225 https://doi.org/10.1111/j.1365-2583.2006.00630.x
  38. Kim, S.R., Kim, M.I., Hong, M.Y., Kim, K.Y., Kang, P.D., Hwang, J.S., Han, Y.S., Jin, B.R., and Kim, I. (2009). The complete mitogenome sequence of the Japanese oak silkmoth, antheraea uamamai(Lepidoptera: Saturniidae). Mol. Biol. Rep. (in press) (DOI 10.1007/s11033-008-9393-2)
  39. Kukalova-Peck, J., and Lawrence, J.F. (1993). Evolution of the hind wing in Coleoptera. Can. Entomol. 125, 181-258 https://doi.org/10.4039/Ent125181-2
  40. Lawrence, J.F. (1982). Coleoptera. In Synopsis and Classificatiion of Living Organisms, S. Parker, ed. (New York, USA: McGraw-Hill), pp. 482-553
  41. Lawrence, J.F., and Newton, A.F. (1982). Evolution and classification of beetles. Annu. Rev. Ecol. Syst. 13, 261-290 https://doi.org/10.1146/annurev.es.13.110182.001401
  42. Lewis, D.L., Farr, C.L., and Kaguni, L.S. (1995). Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol. Biol. 4, 263-278 https://doi.org/10.1111/j.1365-2583.1995.tb00032.x
  43. Li, X., Ogoh, K., Ohba, N., Liang, X., and Ohmiya, Y. (2007). Mitochondrial genomes of two luminous beetles, Rhagophthalmus lufengensis and R. ohbai (Arthropoda, Insecta, Coleoptera). Gene 392, 196-205 https://doi.org/10.1016/j.gene.2006.12.017
  44. Lowe, T.M., and Eddy, S.R. (1997). tRNA-scan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964 https://doi.org/10.1093/nar/25.5.955
  45. Marvaldi, A.E., Duckett, C.N., Kjer, K.M., and Gillespie, J.J. (2008). Structural alignment of 18S and 28S rDNA sequences provides insights into phylogeny of Phytophaga (Coleoptera: Curculionoidea and Chrysomeloidea). Zool. Scr. 38, 63-77 https://doi.org/10.1111/j.1463-6409.2008.00360.x
  46. Monforte, A., Barrio, E., and Latorre, A. (1993). Characterization of the= length polymorphism in the A+T-rich region of the Drosophila obscura group species. J. Mol. Evol. 36, 214-223 https://doi.org/10.1007/BF00160476
  47. Moritz, C., Dowling, T.E., and Brown, W.M. (1987). Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18, 269-292 https://doi.org/10.1146/annurev.es.18.110187.001413
  48. Murata, K., Satou, M., Matsushima, K., Satake, S., and Yamamoto, Y. (2004). Retrospective estimation of genetic diversity of an extinct oriental white stork (Ciconia boyciana) population in Japan using mitochondrial specimens and implications for reintroduction programs. Conserv. Genetics 5, 553-560 https://doi.org/10.1023/B:COGE.0000041022.71104.1f
  49. Nam, S.H. (1996). The insects of Korea (Seoul, Korea: Kyo-Hak Publishing Co.)
  50. Nardi, F., Carapelli, A., Dallai, R., and Frati, F. (2003). The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Mol. Biol. 12, 605-611 https://doi.org/10.1046/j.1365-2583.2003.00445.x
  51. Ojala, D., Montoya, J., and Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470-474 https://doi.org/10.1038/290470a0
  52. Rand, D.M., and Harrison, R.G. (1989). Molecular population genetics of mtDNA size variation in crickets. Genetics 121, 551-569
  53. Renfu, S., Nick, J.H., Campbell, H., and Barker, S.C. (2001). Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol. Biol. Evol. 18, 858-865 https://doi.org/10.1093/oxfordjournals.molbev.a003867
  54. Salvato, P., Simonato, M., Battisti, A., and Negrisolo, E. (2008). The complete mitochondrial genome of the bag-shelter moth Ochrogaster Iunifer (Lepidoptera, Notodontidae). BMC Genomics 9, 331 https://doi.org/10.1186/1471-2164-9-331
  55. Schultheis, A.S., Weigt, L.A., and Hendricks, A.C. (2002). Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera: utility of tandem repeatcontaining regions in studies of population genetics and evolutionary history. Insect Mol. Biol. 11, 605-610 https://doi.org/10.1046/j.1365-2583.2002.00371.x
  56. Shao, R., Campbell, N.J.H., and Barker, S.C. (2001). Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, heterodozus macropus (Phthiraptera). Mol. Biol. Evol. 18, 858-865 https://doi.org/10.1093/oxfordjournals.molbev.a003867
  57. Sheffield, N.C., Song, H., Cameron, S.L., and Whiting, M.F. (2008). A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol. Biol. Evol. 25, 2499-2509 https://doi.org/10.1093/molbev/msn198
  58. Stewart, J.B., and Beckenbach, A.T. (2003). Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata. Mol. Phylogenet. Evol. 26, 513-526 https://doi.org/10.1016/S1055-7903(02)00421-9
  59. Swofford, D.L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods) ver 4.10 (Sunderland, USA: Sinauer Associates)
  60. Taanman, J.W. (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta 1410, 103-123 https://doi.org/10.1016/S0005-2728(98)00161-3
  61. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  62. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 173-216
  63. Wolstenholme, D.R. (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141, 173-216 https://doi.org/10.1016/S0074-7696(08)62066-5
  64. Yukuhiro, K., Sezutsu, H., Itoh, M., Shimizu, K., and Banno, Y. (2002). Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silk moth, Bombyx mandarina, and its close relative, the domesticated silk moth, Bombyx mori Mol. Biol. Evol. 19, 1385-1389 https://doi.org/10.1093/oxfordjournals.molbev.a004200
  65. Zhang, D., Szymura, J.M., and Hewitt, G.M. (1995). Evolution and structural conservation of the control region of insect mitochondrial DNA. J. Mol. Evol. 40, 382-391 https://doi.org/10.1007/BF00164024
  66. Zhang, D.X., and Hewitt, G.M. (1997). Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Evol. 25, 99-120 https://doi.org/10.1016/S0305-1978(96)00042-7

피인용 문헌

  1. Complete mitochondrial genome of brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae), and phylogenetic relationships of hemipteran suborders vol.28, pp.3, 2009, https://doi.org/10.1007/s10059-009-0125-9
  2. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics vol.38, pp.21, 2009, https://doi.org/10.1093/nar/gkq807
  3. Conserved PCR Primer Set Designing for Closely-Related Species to Complete Mitochondrial Genome Sequencing Using a Sliding Window-Based PSO Algorithm vol.6, pp.3, 2009, https://doi.org/10.1371/journal.pone.0017729
  4. The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects vol.12, pp.None, 2011, https://doi.org/10.1186/1471-2164-12-221
  5. Complete sequence and gene organization of the mitochondrial genome of Batocera lineolata Chevrolat (Coleoptera: Cerambycidae) vol.57, pp.27, 2009, https://doi.org/10.1007/s11434-012-5271-3
  6. The first mitochondrial genome for the wasp superfamily Platygastroidea: the egg parasitoidTrissolcus basalis vol.55, pp.3, 2009, https://doi.org/10.1139/g2012-005
  7. Complete mitochondrial genome of the seven-spotted lady beetle, Coccinella septempunctata (Coleoptera: Coccinellidae) vol.23, pp.3, 2009, https://doi.org/10.3109/19401736.2012.668901
  8. Characterization of the Mitochondrial Genome of the Diamondback MothPlutella xylostella(Lepidoptera: Plutellidae) and Phylogenetic Analysis of Advanced Moths and Butterflies vol.32, pp.4, 2009, https://doi.org/10.1089/dna.2012.1942
  9. Complete coding region of the mitochondrial genome of Monochamus alternatus hope (Coleoptera: Cerambycidae). vol.30, pp.7, 2009, https://doi.org/10.2108/zsj.30.570
  10. Description of Nearly Completed Mitochondrial Genome Sequences of the Garden Chafer Polyphylla laticollis manchurica, Endangered in Korea (Insecta: Coleoptera) vol.27, pp.1, 2013, https://doi.org/10.7852/ijie.2013.27.1.185
  11. First record of Rhoptrocentruspiceus Marshall ( Hymenoptera , Braconidae , Doryctinae ) as parasitoid of Psacotheahilarishilaris (Pascoe) ( Coleoptera , Cerambycidae ) vol.482, pp.None, 2009, https://doi.org/10.3897/zookeys.482.8946
  12. Complete mitochondrial genome of the two-spotted stag beetle, Metopodontus blanchardi (Coleoptera: Lucanidae) vol.26, pp.2, 2009, https://doi.org/10.3109/19401736.2013.825788
  13. Complete mitochondrial genome of the Burmese giant earthworm, Tonoscolex birmanicus (Clitellata: Megascolecidae) vol.26, pp.3, 2009, https://doi.org/10.3109/19401736.2013.830300
  14. The beetle tree of life reveals that Coleoptera survived end‐Permian mass extinction to diversify during the Cretaceous terrestrial revolution vol.40, pp.4, 2009, https://doi.org/10.1111/syen.12132
  15. The complete mitochondrial genome of the longhorn beetle,Massicus raddei vol.27, pp.1, 2016, https://doi.org/10.3109/19401736.2014.880892
  16. Complete mitochondrial genome of the Japanese pine sawyer,Monochamus alternatus(Coleoptera: Cerambycidae) vol.27, pp.2, 2009, https://doi.org/10.3109/19401736.2014.936321
  17. The mitochondrial genome of the multicolored Asian lady beetle Harmonia axyridis (Pallas) and a phylogenetic analysis of the Polyphaga (Insecta: Coleoptera) vol.27, pp.4, 2009, https://doi.org/10.3109/19401736.2015.1046165
  18. Complete mitochondrial genome of Cryptolestes pusillus (Coleoptera: Laemophloeidae) vol.27, pp.5, 2009, https://doi.org/10.3109/19401736.2015.1079865
  19. Complete mitochondrial genome of Callipogon relictus Semenov (Coleoptera: Cerambycidae): a natural monument and endangered species in Korea vol.2, pp.2, 2009, https://doi.org/10.1080/23802359.2017.1372718
  20. The complete mitochondrial genome sequence from the longicorn beetle Obrium sp. (Coleoptera: Cerambycidae) vol.28, pp.3, 2009, https://doi.org/10.3109/19401736.2015.1122766
  21. Revisiting Coleoptera a + T-rich region: structural conservation, phylogenetic and phylogeographic approaches in mitochondrial control region of bioluminescent Elateridae species (Coleoptera) vol.28, pp.5, 2009, https://doi.org/10.3109/24701394.2016.1174220
  22. The mitochondrial genomes of two walnut pests, Gastrolina depressa depressa and G . depressa thoracica (Coleoptera: Chrysomelidae), and phylogenetic analyses vol.6, pp.None, 2009, https://doi.org/10.7717/peerj.4919
  23. The Complete Mitochondrial Genome of the Longhorn Beetle Dorysthenes paradoxus (Coleoptera: Cerambycidae: Prionini) and the Implication for the Phylogenetic Relationships of the Cerambycidae Species vol.18, pp.2, 2009, https://doi.org/10.1093/jisesa/iey012
  24. The complete mitochondrial genomes of five longicorn beetles (Coleoptera: Cerambycidae) and phylogenetic relationships within Cerambycidae vol.7, pp.None, 2009, https://doi.org/10.7717/peerj.7633
  25. The complete mitochondrial genome of Xystrocera globosa (Coleoptera: Cerambycidae) and its phylogeny vol.4, pp.1, 2009, https://doi.org/10.1080/23802359.2019.1605852
  26. Mitochondrial genomes of twelve species of hyperdiverse Trigonopterus weevils vol.8, pp.None, 2009, https://doi.org/10.7717/peerj.10017
  27. The complete mitochondrial genome of Annamanum lunulatum (Coleoptera: Lamiinae) and its phylogeny vol.5, pp.1, 2009, https://doi.org/10.1080/23802359.2019.1710284
  28. Comparative mitochondrial genome analysis of Dendrolimus houi (Lepidoptera: Lasiocampidae) and phylogenetic relationship among Lasiocampidae species vol.15, pp.5, 2009, https://doi.org/10.1371/journal.pone.0232527
  29. Mitogenome Analysis of Four Lamiinae Species (Coleoptera: Cerambycidae) and Gene Expression Responses by Monochamus alternatus When Infected with the Parasitic Nematode, Bursaphelenchus mucronatus vol.12, pp.5, 2009, https://doi.org/10.3390/insects12050453
  30. Complete mitochondrial genome of the longhorn date palm stem borer Jebusaea hammerschmidtii (Reiche, 1878) vol.6, pp.11, 2021, https://doi.org/10.1080/23802359.2021.1989334