DOI QR코드

DOI QR Code

Modeling the Cardiac Na+/H+ Exchanger Based on Major Experimental Findings

  • Cha, Chae Young (Biosimulation Project, Faculty of Bioinformatics, Ritsumeikan University) ;
  • Noma, Akinori (Biosimulation Project, Faculty of Bioinformatics, Ritsumeikan University)
  • Received : 2009.07.03
  • Accepted : 2009.07.06
  • Published : 2009.08.31

Abstract

$Na^+-H^+$ exchanger (NHE) is the main acid extruder in cardiac myocytes. We review the experimental findings of ion-dependency of NHE activity, and the mathematical modeling developed so far. In spite of extensive investigation, many unsolved questions still remain. We consider that the precise description of NHE activity with mathematical models elucidates the roles of NHE in maintaining ionic homeostasis, especially under pathophysiological conditions.

Keywords

References

  1. Alexander, R.T., Malevanets, A., Durkan, A.M., Kocinsky, H.S., Aronson, P.S., Orlowski, J., and Grinstein, S. (2007). Membrane curvature alters the activation kinetics of the epithelial $Na^+/H^+$ exchanger, NHE3. J. Biol. Chem. 282, 7376-7384 https://doi.org/10.1074/jbc.M608557200
  2. Aronson, P.S., Nee, J., and Suhm, M.A. (1982). Modifier role of internal H$^{+}$ in activating the Na$^{+}$-H$^{+}$ exchanger in renal microvillus membrane vesicles. Nature 299, 161-163 https://doi.org/10.1038/299161a0
  3. Bers, D.M., Barry, W.H., and Despa, S. (2003). Intracellular Na$^{+}$ regulation in cardiac myocytes. Cardiovasc. Res. 57, 897-912 https://doi.org/10.1016/S0008-6363(02)00656-9
  4. Bountra, C., and Vaughan-Jones, R.D. (1989). Effect of intracellular and extracellular pH on contraction in isolated, mammalian cardiac muscle. J. Physiol. 418, 163-187 https://doi.org/10.1113/jphysiol.1989.sp017833
  5. Ch'en, F.F., Vaughan-Jones, R.D., Clarke, K., and Noble, D. (1998). Modelling myocardial ischaemia and reperfusion. Prog. Biophys. Mol. Biol. 69, 515-538 https://doi.org/10.1016/S0079-6107(98)00023-6
  6. Ch'en, F.F., Dilworth, E., Swietach, P., Goddard, R.S., and Vaughan-Jones, R.D. (2003). Temperature dependence of Na$^{+}$-H$^{+}$ exchange, Na$^{+}$-HCO$_{3}$ co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes. J. Physiol. 552, 715-726 https://doi.org/10.1113/jphysiol.2003.051888
  7. Choi, H.S., Trafford, A.W., Orchard, C.H., and Eisner, D.A. (2000). The effect of acidosis on systolic $ Ca^2^+$ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes. J. Physiol. 529, 661-668 https://doi.org/10.1111/j.1469-7793.2000.00661.x
  8. Crampin, E.J., and Smith, N.P. (2006). A dynamic model of excitation- ontraction coupling during acidosis in cardiac ventricular myocytes. Biophys. J. 90, 3074-3090 https://doi.org/10.1529/biophysj.105.070557
  9. Crampin, E.J., Smith, N.P., Langham, A.E., Clayton, R.H., and Orchard, C.H. (2006). Acidosis in models of cardiac ventricular myocytes. Philos. Transact. A. Math. Phys. Eng. Sci. 364, 1171-1186 https://doi.org/10.1098/rsta.2006.1763
  10. Demaurex, N., Orlowski, J., Brisseau, G., Woodside, M., and Grinstein, S. (1995). The mammalian $Na^+/H^+$ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an $H^+$ conductance. J. Gen. Physiol. 106, 85-111 https://doi.org/10.1085/jgp.106.1.85
  11. Fuster, D., Moe, O.W., and Hilgemann, D.W. (2008). Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. J. Gen. Physiol. 132, 465-480 https://doi.org/10.1085/jgp.200810016
  12. Goodrich, A.L., and Suchy, F.J. (1990). $Na^+-H^+$ exchange in basolateral plasma membrane vesicles from neonatal rat liver. Am. J. Physiol. 259, G334-339
  13. Gore, J., Besson, P., Hoinard, C., and Bougnoux, P. (1994). $Na^+-H^+$ antiporter activity in relation to membrane fatty acid composition and cell proliferation. Am. J. Physiol.266, C110-120 https://doi.org/10.1152/ajpcell.1994.266.1.C110
  14. Green, J., Yamaguchi, D.T., Kleeman, C.R., and Muallem, S. (1988). Cytosolic pH regulation in osteoblasts. Interaction of $Na^+$ and $H^+$ with the extracellular and intracellular faces of the $Na^+-H^+$ exchanger. J. Gen. Physiol. 92, 239-261 https://doi.org/10.1085/jgp.92.2.239
  15. Harrison, S.M., Frampton, J.E., McCall, E., Boyett, M.R., and Orchard, C.H. (1992). Contraction and intracellular $Ca^2$, $Na^+$, and $H^+$ during acidosis in rat ventricular myocytes. Am. J. Physiol. 262, C348-357 https://doi.org/10.1152/ajpcell.1992.262.2.C348
  16. Hisamitsu, T., Ben Ammar, Y., Nakamura, T.Y., and Wakabayashi, S. (2006). Dimerization is crucial for the function of the $Na^+/H^+$ exchanger NHE1. Biochemistry 45, 13346-13355 https://doi.org/10.1021/bi0608616
  17. Hoffmann, G., Ko, Y., Sachinidis, A., Gobel, B.O., Vetter, H., Rosskopf, D., Siffert, W., and Dusing, R. (1995). Kinetics of $Na^+/H^+$ exchange in vascular smooth muscle cells from WKY and SHR: effects of phorbol ester. Am. J. Physiol. 268, C14-20 https://doi.org/10.1152/ajpcell.1995.268.1.C14
  18. Hoque, A.N., Haist, J.V., and Karmazyn, M. (1997). $Na^+/H^+$ exchange inhibition protects against mechanical, ultrastructural, and biochemical impairment induced by low concentrations of lysophosphatidylcholine in isolated rat hearts. Circ. Res. 80, 95-102 https://doi.org/10.1161/01.RES.80.1.95
  19. Jean, T., Frelin, C., Vigne, P., Barbry, P., and Lazdunski, M. (1985). Biochemical properties of the $Na^+/H^+$ exchange system in rat brain synaptosomes. Interdependence of internal and external pH control of the exchange activity. J. Biol. Chem. 260, 9678-9684
  20. Kuwahara, M., Sasaki, S., Uchida, S., Cragoe, E.J., Jr., and Marumo, F. (1994). Different development of apical and basolateral Na-H exchangers in LLC-PK1 renal epithelial cells: characterization by inhibitors and antisense oligonucleotide. Biochim. Biophys. Acta 1220, 132-138 https://doi.org/10.1016/0167-4889(94)90128-7
  21. Lacroix, J., Poet, M., Maehrel, C., and Counillon, L. (2004). A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens. EMBO Rep. 5, 91-96 https://doi.org/10.1038/sj.embor.7400035
  22. Le Prigent, K., Lagadic-Gossmann, D., and Feuvray, D. (1997). Modulation by pH0 and intracellular $Ca^2^+$ of $Na^+/H^+$ exchange in diabetic rat isolated ventricular myocytes. Circ. Res.80, 253-260 https://doi.org/10.1161/01.RES.80.2.253
  23. Leem, C.H., Lagadic-Gossmann, D., and Vaughan-Jones, R.D. (1999). Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J. Physiol.517(Pt1), 159-180 https://doi.org/10.1111/j.1469-7793.1999.0159z.x
  24. Levine, S.A., Montrose, M.H., Tse, C.M., and Donowitz, M. (1993). Kinetics and regulation of three cloned mammalian $Na^+/H^+$ exchangers stably expressed in a fibroblast cell line. J. Biol. Chem.268, 25527-25535
  25. Miyata, Y., Muto, S., and Kusano, E. (2005). Mechanisms for nongenomic and genomic effects of aldosterone on $Na^+/H^+$ exchange in vascular smooth muscle cells. J. Hypertens. 23, 2237-2250 https://doi.org/10.1097/01.hjh.0000194122.27475.6c
  26. Moncoq, K., Kemp, G., Li, X., Fliegel, L., and Young, H.S. (2008). Dimeric structure of human $Na^+/H^+$ exchanger isoform 1 overproduced in Saccharomyces cerevisiae. J. Biol. Chem. 283, 4145-4154 https://doi.org/10.1074/jbc.M704844200
  27. Ng, L.L., Davies, J.E., Siczkowski, M., Sweeney, F.P., Quinn, P.A., Krolewski, B., and Krolewski, A.S. (1994). Abnormal $Na^+/H^+$ antiporter phenotype and turnover of immortalized lymphoblasts from type 1 diabetic patients with nephropathy. J. Clin. Invest. 93,2750-2757 https://doi.org/10.1172/JCI117291
  28. Niederer, S.A., and Smith, N.P. (2007). A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys. J. 92, 4030-4044 https://doi.org/10.1529/biophysj.106.095463
  29. Orchard, C.H., and Kentish, J.C. (1990). Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 258, C967-981
  30. Otsu, K., Kinsella, J., Sacktor, B., and Froehlich, J.P. (1989). Transient state kinetic evidence for an oligomer in the mechanism of $Na^+/H^+$ exchange. Proc. Natl. Acad. Sci. USA 86, 4818-4822 https://doi.org/10.1073/pnas.86.13.4818
  31. Otsu, K., Kinsella, J.L., Heller, P., and Froehlich, J.P. (1993). Sodium dependence of the $Na^+/H^+$ exchanger in the pre-steady state. Implications for the exchange mechanism. J. Biol. Chem. 268, 3184-3193
  32. Pandit, S.V., Clark, R.B., Giles, W.R., and Demir, S.S. (2001). A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81, 3029-3051 https://doi.org/10.1016/S0006-3495(01)75943-7
  33. Pedersen, S.F., O'Donnell, M.E., Anderson, S.E., and Cala, P.M. (2006). Physiology and pathophysiology of $Na^+/H^+$ exchange and $Na^+ -K^+ -2Cl^-$ cotransport in the heart, brain, and blood. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1-25 https://doi.org/10.1152/ajpregu.00782.2005
  34. Slepkov, E.R., Rainey, J.K., Sykes, B.D., and Fliegel, L. (2007). Structural and functional analysis of the $Na^+/H^+$ exchanger. Biochem. J. 401, 623-633 https://doi.org/10.1042/BJ20061062
  35. Swietach, P., and Vaughan-Jones, R.D. (2005). Spatial regulation of intracellular pH in the ventricular myocyte. Ann. N Y Acad. Sci. 1047, 271-282 https://doi.org/10.1196/annals.1341.024
  36. van Borren, M.M., Baartscheer, A., Wilders, R., and Ravesloot, J.H. (2004). NHE-1 and NBC during pseudo-ischemia/reperfusion in rabbit ventricular myocytes. J. Mol. Cell. Cardiol. 37, 567-577 https://doi.org/10.1016/j.yjmcc.2004.05.017
  37. Vaughan-Jones, R.D., and Wu, M.L. (1990). Extracellular $H^+$ inactivation of $Na^+-H^+$ exchange in the sheep cardiac Purkinje fibre. J. Physiol. 428, 441-466 https://doi.org/10.1113/jphysiol.1990.sp018221
  38. Wakabayashi, S., Hisamitsu, T., Pang, T., and Shigekawa, M. (2003a). Kinetic dissection of two distinct proton binding sites in $Na^+/H^+$ exchangers by measurement of reverse mode reaction. J. Biol. Chem. 278, 43580-43585 https://doi.org/10.1074/jbc.M306690200
  39. Wakabayashi, S., Hisamitsu, T., Pang, T., and Shigekawa, M. (2003b). Mutations of Arg440 and Gly455/Gly456 oppositely change pH sensing of $Na^+/H^+$ exchanger 1. J. Biol. Chem. 278, 11828-11835 https://doi.org/10.1074/jbc.M213243200
  40. Wallert, M.A., and Frohlich, O. (1989). $Na^+-H^+$ exchange in isolated myocytes from adult rat heart. Am. J. Physiol. 257, C207-213 https://doi.org/10.1152/ajpcell.1989.257.2.C207
  41. Weinstein, A.M. (1995). A kinetically defined $Na^+/H^+$ antiporter within a mathematical model of the rat proximal tubule. J. Gen. Physiol. 105, 617-641 https://doi.org/10.1085/jgp.105.5.617
  42. Wu, M.L., and Vaughan-Jones, R.D. (1997). Interaction between $Na^+$ and $H^+$ ions on Na-H exchange in sheep cardiac Purkinje fibers. J. Mol. Cell. Cardiol. 29, 1131-1140 https://doi.org/10.1006/jmcc.1996.0338
  43. Yamamoto, T., Swietach, P., Rossini, A., Loh, S.H., Vaughan-Jones, R.D., and Spitzer, K.W. (2005). Functional diversity of electrogenic $Na^+-HCO_3^-$ cotransport in ventricular myocytes from rat, rabbit and guinea pig. J. Physiol. 562, 455-475 https://doi.org/10.1113/jphysiol.2004.071068
  44. Yasutake, M., Haworth, R.S., King, A., and Avkiran, M. (1996). Thrombin activates the sarcolemmal $Na^+-H^+$ exchanger. Evidence for a receptor-mediated mechanism involving protein kinase C. Circ. Res. 79, 705-715 https://doi.org/10.1161/01.RES.79.4.705