Mechanical Properties of Alkali Treated Kenaf Fiber Filled PP Bio-Composites

알칼리 처리된 Kenaf 섬유가 충전된 Polypropylene/Kenaf 바이오복합재의 기계적 특성

  • Kim, Samsung (Dept. of Forest Resources, Daegu University) ;
  • Lee, Byoung-Ho (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Hyun-Joong (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Oh, Sei Chang (Dept. of Forest Resources, Daegu University) ;
  • Ahn, Sye-Hee (Dept. of Forest Resources, Daegu University)
  • 김삼성 (대구대학교 산림자원학과) ;
  • 이병호 (서울대학교 산림과학부 환경재료과학 전공 바이오복합재료 및 접착과학 연구실) ;
  • 김현중 (서울대학교 산림과학부 환경재료과학 전공 바이오복합재료 및 접착과학 연구실) ;
  • 오세창 (대구대학교 산림자원학과) ;
  • 안세희 (대구대학교 산림자원학과)
  • Received : 2008.10.31
  • Accepted : 2009.02.24
  • Published : 2009.05.25

Abstract

This study was to investigate the effect of alkali treatment for long kenaf fiber to improve fiber surface characterics by removal of wax, lignin and hemicellulose which affect adversely for matrix union. SEM observation was also studied to check out the interface adhesion improvement by the alkali pre-treatment. From the result, interface coherence increased by 3% alkali pre-treatment and reached a maximum by 5% alkali pre-treatment. However, the 3% the bio-composites treated with 3% alkali was highest tensile and flexural strength than other.

본 연구에서는 천연 섬유와 matrix간의 결합에 불리하게 작용하는 wax, lignin, hemicellulose 등을 제거하기 위한 방법 중 하나인 NaOH를 이용한 천연섬유의 알칼리 처리가 Kenaf 장섬유/PP 혼합 바이오복합재 제조 시 계적인 물성에 미치는 영향에 대해 알아보았다. Kenaf 장섬유의 적절한 배합비와 알칼리처리를 통한 최적의 바이오복합재를 제조하기 위하여 알칼리 처리 시의 농도와 kenaf fiber의 함유량을 달리하여 각 처리조건에 따른 바이오복합재의 특성을 조사하였다. 알칼리 처리를 통한 계면 결합의 증가를 확인하기 위하여 SEM을 이용하여 복합재의 단면을 확인하였다. 그 결과 알칼리 처리가 3% 농도부터 계면 결합이 증가하고, 5%일 때의 최고의 계면 결합력을 보였다. 하지만 기계적 강도에서는 알칼리 농도 3% 처리한 것이 최적이었으며 kenaf fiber가 30% 함유된 PP/kenaf섬유 바이오복합재가 높은 강도를 나타내었다.

Keywords

References

  1. 이병호, 김희수, 최성우, 김현중. 2006. 표면처리에 의한 왕겨분말-폴리프로필렌 바이오복합재의 계면 접착력 향상, 목재공학. 34(3): 38∼45
  2. ASTM D638 Standard Test Method for Tensile Properties of Plastics. ASTM International
  3. ASTM D790 Standard Test Methods for Flexural Properties of Unreinforced and Reinforce Plastics and Electrical Insulating Materials. ASTM International
  4. Batsoulis, A. M., M. K. Nacos, C. S. Pappas, P. A. Tarantilis, T. Mavromustakos, and M. G. Polissiou. 2004. Determination of uroni acids in isolated hemicelluloses form kenaf using diffuse reflectanceinfrared fourier transform spectroscopy and the curve-fitting deconvolution method. Applied Sperctroscopy 58(2): 199∼202 https://doi.org/10.1366/000370204322842931
  5. Bisanda, E. T. N. and M. P. Ansell. 1991. The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites, Composite Science and Technology 41: 165∼178 https://doi.org/10.1016/0266-3538(91)90026-L
  6. Edeerozey, A. M. Mohd, Hazizan Md Akil, A. B. Azhar, and M. I. Zainal Ariffin. 2004. Chemical modification of kenaf fibers, Materials Letters 61: 2023∼2025 https://doi.org/10.1016/j.matlet.2006.08.006
  7. Geethamma, V., R. Joseph, and S. Thomas. 1995. Short coir fibre length, orientation and alkali treatment, Journal of Applied Polymer Science 55: 583∼594 https://doi.org/10.1002/app.1995.070550405
  8. Gomes, A., K. Goda, and J. Ohji. 2004. Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites, JSME International Journal. Series A 47(4): 541∼546 https://doi.org/10.1299/jsmea.47.541
  9. Kim, H. S., H. S. Yang, and H. J. Kim. 2006. Enhanced interfacial adhesion of bioflour-filled poly (propylene) biocomposites by electron-beam irradiation, Polymer Degradation and Stability 290(7): 762∼772 https://doi.org/10.1002/mame.200600121
  10. Mohanty, A. K., M. A. Misra, and L. T. Drzal. 2001. Surface modification of natural fibers and performance of the resulting biocomposite: An overview, Composite Interfaces 8(5): 313∼343 https://doi.org/10.1163/156855401753255422
  11. Mohanty, A. K., M. A. Khan, S. Sahoo, and G. hinrichsen. 2000. Effect of chemical modification on the performance of biodegradable jute yarn- Biopol composites, Journal of Material Science 35: 2589∼2595 https://doi.org/10.1023/A:1004723330799
  12. Mohanty, A. K., M. A. Khan, and G. Hinrichsen. 2000. Surface modification of jute and its influence on performance of biodegradable jute fabric- Biopol composites, Composite Science and Technology 60: 1115∼1124 https://doi.org/10.1016/S0266-3538(00)00012-9
  13. Ndazi, B. S., S. Karlsson, J. V. Tesha, and C. W. Nyahumwa. 2007. Chemical and physical modifications of rice husks for use as composite panels, Composites: Part A 38: 925∼935 https://doi.org/10.1016/j.compositesa.2006.07.004
  14. Aziz, S. H. and M. P. Ansell. 2004. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1–polyester resin matrix, Composites Science and Technology 64: 1219∼1230 https://doi.org/10.1016/j.compscitech.2003.10.001