DOI QR코드

DOI QR Code

Effects of Flaxseed Diets on Performance, Carcass Characteristics and Fatty Acid Composition of Hanwoo Steers

  • Kim, Chong-min (Animal Resources Research Center, College of Animal Bioscience and Technology Konkuk University) ;
  • Kim, Jeong-hoon (Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia) ;
  • Oh, Young-kyoon (National Institute of Animal Science) ;
  • Park, Eun-kyu (Animal Resources Research Center, College of Animal Bioscience and Technology Konkuk University) ;
  • Ahn, Gyu-chul (Animal Resources Research Center, College of Animal Bioscience and Technology Konkuk University) ;
  • Lee, Gang-yeon (Animal Resources Research Center, College of Animal Bioscience and Technology Konkuk University) ;
  • Lee, Jung-il (Animal Resources Research Center, College of Animal Bioscience and Technology Konkuk University) ;
  • Park, Keun-kyu (Animal Resources Research Center, College of Animal Bioscience and Technology Konkuk University)
  • Received : 2009.02.03
  • Accepted : 2009.04.04
  • Published : 2009.08.01

Abstract

This study was conducted to determine the effects of dietary level of whole flaxseed (WFS; 0, 10 and 15%) on performance, carcass characteristics and fatty acid composition of serum and subcutaneous, perirenal, and intramuscular adipose tissues of Korean Hanwoo cattle. The daily gains were not different among treatments. Dietary inclusion of WFS decreased (p<0.05) feed intake but improved (p<0.05) feed conversion ratio (feed/gain). Backfat thickness and marbling score were increased (p<0.05) by dietary WFS. Carcass weight, dressing percentage, loin-eye area, and carcass yield and quality were not different among treatments. The proportion of C18:3 in serum and, to a lesser extent, in adipose tissues were increased (p<0.01) by dietary WFS, indicating that lipids from WFS escaped ruminal biohydrogenation. Animals fed WFS had lower proportions of saturated fatty acid (SFA; C14:0 and 16:0) and higher proportions of polyunsaturated fatty acids (PUFA; C18:2. 18:3, 20:2, 20:4, 20:5 and 22:6) in perirenal and intramuscular fat than animals fed diets without WFS, resulting in an increased PUFA/SFA ratio. Furthermore, feeding WFS increased (p<0.01) proportions of $\omega$-3 and $\omega$-6 fatty acids in intramuscular fat but decreased (p<0.05) the $\omega$-6/$\omega$-3 ratio. Relative treatment effects were similar between 10 and 15% WFS. Feeding WFS can effectively alter composition of adipose tissues with enhanced feed conversion ratio.

Keywords

References

  1. Alexander, J. W. 1998. Immunonutrition: The role of $\omega$-3 fatty acids. Nutr. 14:627-633 https://doi.org/10.1016/S0899-9007(98)00004-5
  2. AOAC. 1990. Official method of analysis. 15th edn. Association of Official Analytical Chemists, Washington, DC. pp. 152-157
  3. Bartle, S. J., R. L. Preston and M. F. Miller. 1994. Dietary energy source and density: Effects of roughage source, roughage equivalent, tallow level, and steer type on feedlot performance and carcass characteristics. J. Anim. Sci. 72:1943-1953 https://doi.org/10.2527/1994.7281943x
  4. Belch, J. J. F. and A. Muir. 1998. n-6 and n-3 essential fatty acids in rheumatoid arthritis and other rheumatic conditions. Proc. Nutr. Soc. 57:563-569 https://doi.org/10.1016/S0952-3278(02)00272-7
  5. Bock, B. J., D. L. Harmon, R. T. Brandt, Jr. and J. E. Schneider. 1991. Fat source and calcium level effects on finishing steer performance, digestion and metabolism. J. Anim. Sci. 69:2211-2224 https://doi.org/10.2527/1991.6952211x
  6. Brandt, R. T. and S. J. Anderson. 1990. Supplemental fat sources affect feedlot performance and carcass traits of finishing yearling steers and estimated diet net energy value. J. Anim. Sci. 68:2208-2216 https://doi.org/10.2527/1990.6882208x
  7. Chang, J. H. P., D. K. Lunt and S. B. Smith. 1992. Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. J. Nutr. 122:2074-2080 https://doi.org/10.1093/jn/122.11.2074
  8. Chen, K-J., D-F. Jan, P. W-S. Chiou and D-W Yang. 2002. Effects of dietary heat extruded soybean meal and protected fat supplement on the production, blood and ruminal characteristics of Holstein cows. Asian-Aust. J. Anim. Sci. 15:821-827 https://doi.org/10.5713/ajas.2002.821
  9. Clemens, E., W. Woods and V. Arthaud. 1974. The effect of feeding unsaturated fats as influenced by gelatinized corn and by the presence or absence of rumen protozoa. II. Carcass lipid composition. J. Anim. Sci. 38:640-645 https://doi.org/10.2527/jas1974.383640x
  10. Department of Health, UK. 1994. Report on health and social subjects No. 46. Nutritional aspects of cardiovascular disease. HMSO, London, UK
  11. Dryden, F. D. and J. A. Marchello. 1970. Influence of total lipid and fatty acid composition upon the palatability of three bovine muscles. J. Anim. Sci. 31:36-41 https://doi.org/10.2527/jas1970.31136x
  12. Duncan, D. B. 1955. Multiple range and multiple F test. Biometrics 11:1-4 https://doi.org/10.2307/3001478
  13. Felton, E. E. D. and M. S. Kerley. 2004. Performance and carcass quality of steers fed different sources of dietary fat. J. Anim. Sci. 82:1794-1805 https://doi.org/10.2527/2004.8261794x
  14. Folch, J., M. Lees and G. H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509 https://doi.org/10.1186/1471-2091-6-5
  15. Garcia-Bojalil, C. M., C. R. Staples, C. A. Risco, J. D. Savio and W. W. Thatcher. 1998. Protein degradability and calcium salts of long-chain fatty acids in the diets of lactating dairy cows: Productive responses. J. Dairy Sci. 81:1374-1384 https://doi.org/10.3168/jds.S0022-0302(98)75701-7
  16. Garrett, W. N., Y. T. Yang, W. L. Dunkley and L. M. Smith. 1976. Energy utilization, feedlot performance and fatty acid composition of beef steers fed protein encapsulated tallow or vegetable oils. J. Anim. Sci. 42:1522-1533 https://doi.org/10.2527/jas1976.4261522x
  17. Goodridge, J., J. R. Ingalls and G. H. Crow. 2001. Transfer of omega-3 linolenic acid and linoleic acid to milk fat from flaxseed or linola protected with formaldehyde. Can. J. Anim. Sci. 81:525-532 https://doi.org/10.1080/0003942032000161036
  18. Harbige, L. S. 1998. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease. Proc. Nutr. Soc. 57:555-562 https://doi.org/10.1079/PNS19980081
  19. Hirano, Y., H. Yokota and K. Kita. 2003. Increase in plasma HDLcholesterol concentration in goats fed sesame meal is related to ether extract fraction included in the meal. Asian-Aust. J. Anim. Sci. 16:511-514 https://doi.org/10.5713/ajas.2003.511
  20. Huerta-Leidenz, N. O., H. R. Cross, D. K. Lunt, L. S. Pelton, J. W. Savell and S. B. Smith. 1991. Growth, carcass traits and fatty acid profiles of adipose tissues from steers fed whole cottonseed. J. Anim. Sci. 69:3665-3672 https://doi.org/10.1016/S0305-0491(97)00027-8
  21. Kenelly, J. J. and R. G. Khorasani. 1992. Influence of flaxseed feeding on the fatty acid composition of cow's milk. In: Proceedings of the 54th Flax Inst. Conf. North Dakota St. Univ. Fargo. pp. 99-105
  22. Kim, C. M., J. H. Kim, T. Y. Chung and K. K. Park. 2004a. Effects of Flaxseed diets on fattening response of Hanwoo cattle: 1. Performance and carcass characteristics. Asian-Aust. J. Anim. Sci. 17:1241-1245 https://doi.org/10.5713/ajas.2004.1241
  23. Kim, C. M., J. H. Kim, T. Y. Chung and K. K. Park. 2004b. Effects of Flaxseed diets on fattening response of Hanwoo cattle: 2. Fatty acid composition of serum and adipose tissues. Asian-Aust. J. Anim. Sci. 17:1246-1254 https://doi.org/10.5713/ajas.2004.1246
  24. Kita, K., M. Oka and H. Yokota. 2003. Dietary fatty acid increases body weight gain without a change in rumen fermentation in fattening cattle. Asian-Aust. J. Anim. Sci. 16:39-43 https://doi.org/10.5713/ajas.2003.39
  25. LaBrune, H. J., C. D. Reinhardt, M. E. Dikeman and J. S. Drouillard. 2008. Effects of grain processing and dietary lipid source on performance, carcass characteristics, plasma fatty acids, and sensory properties of steaks from finishing cattle. J. Anim. Sci. 86:167-172 https://doi.org/10.2527/jas.2007-0011
  26. Larick, D. K. and B. E. Turner. 1990. Flavour characteristics of forage- and grain-fed beef as influenced by phospholipid and fatty acid compositional differences. J. Food Sci. 55:312-317 https://doi.org/10.1111/j.1365-2621.1990.tb06751.x
  27. Lee, H-J., S. C. Lee, Y. G. Oh, K. H. Kim, H. B. Kim, Y. H. Park, H. S. Chae and I. B. Chung. 2003. Effects of rumen protected oleic acid in the diet on animal performances, carcass quality and fatty acid composition of Hanwoo steers. Asian-Aust. J. Anim. Sci. 16:1003-1010 https://doi.org/10.5713/ajas.2003.1003
  28. Lee, S. K., Panjono, S. M. Kang, Y. B. Jung, T. S. Kim, I. S. Lee, Y. H. Song and C-G Kang. 2008. Effects of tethering and loose housing on the meat quality of Hanwoo bulls. Asian-Aust. J. Anim. Sci. 21:1807-1814 https://doi.org/10.5713/ajas.2008.80144
  29. Maddock, T. D., M. L. Bauer, K. B. Koch, V. L. Anderson, R. J. Maddock, G. Barcelo-Coblijn, E. J. Murphy and G. P. Lardy. 2006. Effect of processing flax in beef feedlot diets on performance, carcass characteristics, and trained sensory panel ratings. J. Anim. Sci. 84:1544-1551 https://doi.org/10.2527/2006.8461544x
  30. Mandell, I. B., J. G. Buchanan-Smith and C. P. Campbell. 1998. Effects of forage vs. grain feeding on carcass characteristics, fatty acid composition, and beef quality in Limousin-cross steers when time on feed in controlled. J. Anim. Sci. 76:2619-2630 https://doi.org/10.1590/S1516-89132003000400016
  31. Marmer, W. N., R. J. Maxwell and J. E. Williams. 1984. Effects of dietary regimen and tissue site on bovine fatty acid profiles. J. Anim. Sci. 59:109-121 https://doi.org/10.2527/jas1984.591109x
  32. NLCF. 1999. Korean carcass grading standard. National Livestock Co-operatives Federation, Seoul, Korea
  33. Noci, F., P. French, F. J. Monahan and A. P. Moloney. 2007. The fatty acid composition of muscle fat and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates. J. Anim. Sci. 85:1062-1073 https://doi.org/10.2527/jas.2006-105
  34. Park, B. S. and I. J. Yoo. 1994. Comparison of fatty acid composition among imported beef, Holstein steer beef and Hanwoo beef. Kor. J. Anim. Sci. 36(1):69-75
  35. Petit, H. V. 2002. Digestion, milk production, milk composition and blood composition of dairy cows fed whole flaxseed. J. Dairy Sci. 85:1482-1490 https://doi.org/10.3168/jds.S0022-0302(02)74217-3
  36. Ponnampalam, E. N., G. R. Trout, A. J. Sinclair, A. R. Egan and B. J. Leury. 2001. Comparison of the color stability and lipid oxidative stability of fresh and vacuum packaged lamb muscle containing elevate omega-3 and omega-6 fatty acid levels from dietary manipulation. Meat Sci. 58:151-161 https://doi.org/10.1016/S0309-1740(00)00143-1
  37. Raes, K., S. De Smet and D. Demeyer. 2004. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat:a review. Anim. Feed Sci. Technol. 113:199-221 https://doi.org/10.1016/j.anifeedsci.2003.09.001
  38. Ramirez, J. E. and R. A. Zinn. 2000. Interaction of dietary magnesium level on the feeding value of supplemental fat in finishing diets for feedlot steers. J. Anim. Sci. 78:2072-2080 https://doi.org/10.2527/2000.7882072x
  39. Rule, D. C., W. H. Wu, J. R. Busboom, F. C. Hinds and C. J. Kercher. 1989. Dietary canola seeds alter the fatty acid composition of bovine subcutaneous adipose tissue. Nutr. Rep. Int. 39:781
  40. San$\tilde{u}$do, C., M. E. Enser, M. M. Campo, G. R. Nute, G. I. Maria, I. Sierra and J. D. Wood. 2000. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 54:339-346 https://doi.org/10.1016/S0309-1740(99)00108-4
  41. SAS Institute. 2002. $SAS^{{\circledR}}$ User's guide: Statistics. Version 9.1 Edition. Statistical Analysis Systems Institute Inc., Cary, NC
  42. Scollan, N. D., N. J. Choi, E. Kurt, A. V. Fisher, M. Enser and J. D. Wood. 2001. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 85:115-124 https://doi.org/10.1079/BJN2000223
  43. Scollan, N. D., M. Enser, S. K. Gulati, I. Richardson and J. D. Wood. 2003. Effects of including a ruminally protected lipid supplement in the diet on the fatty acid composition of beef muscle. Br. Nutr. 90:709-716 https://doi.org/10.1079/BJN2003933
  44. Solomon, M. B., G. P. Lynch and D. S. Lough. 1992. Influence of dietary palm oil supplement on serum lipid metabolites, carcass characteristics and lipid composition of carcass tissues of growing ram and ewe lambs. J. Anim. Sci. 70:2746-2751 https://doi.org/10.2527/1992.7092746x
  45. Tanaka, S. 1985. Chemical studies on the adipose tissues and muscle lipids of fattening beef cattle IV. Fatty acid composition and their interrelationships of subcutaneous, intermuscular and abdominal adipose tissues form three beef breeds. Japanese J. Dairy Food Sci. 34(4):A91-A102
  46. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  47. Wang, J. H., S. H. Choi, K. W. Lim, K. H. Kim and M. K. Song. 2006. Effects of the mixed oil and monensin supplementation, and feeding duration of supplements on c9,t11-CLA contents in plasma and fat tissues of Korean native (Hanwoo) steers. Asian-Aust. J. Anim. Sci. 19:1464-1469 https://doi.org/10.5713/ajas.2006.1464
  48. White, B. G., J. R. Ingalls, H. R. Sharman and J. A. McKirdy. 1987. The effects of whole sunflower seeds on the flow of fat and fatty acids through the gastrointestinal tract of cannulated Holstein steer. Can. J. Anim. Sci. 67:447-459 https://doi.org/10.4141/cjas87-043
  49. Williams, C. M. 2000. Dietary fatty acids and human health. Ann. Zootechonol. 49:165-180 https://doi.org/10.1051/animres:2000116
  50. Zembayashi, M., K. Nishimura, D. K. Lunt and S. B. Smith. 1995. Effect of breed type and sex on the fatty acid composition of subcutaneous and intramuscular lipids of finishing steers and heifers. J. Anim. Sci. 73:3325-3332 https://doi.org/10.2527/1995.73113325x

Cited by

  1. Effect of flaxseed and forage type on carcass and meat quality of finishing cull cows vol.91, pp.4, 2011, https://doi.org/10.4141/cjas2011-030
  2. Association of five candidate genes with fatty acid composition in Korean cattle vol.39, pp.5, 2012, https://doi.org/10.1007/s11033-011-1426-6
  3. Subcutaneous Adipose Fatty Acid Profiles and Related Rumen Bacterial Populations of Steers Fed Red Clover or Grass Hay Diets Containing Flax or Sunflower-Seed vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0104167
  4. Performance, Carcass Quality and Fatty Acid Profile of Crossbred Wagyu Beef Steers Receiving Palm and/or Linseed Oil vol.29, pp.10, 2016, https://doi.org/10.5713/ajas.15.0546
  5. Effects of feeding diets rich in α-linolenic acid and copper on performance, carcass characteristics, and fatty acid profiles of feedlot heifers1 vol.92, pp.12, 2014, https://doi.org/10.2527/jas.2014-8011
  6. Development of Analysis Condition and Detection of Volatile Compounds from Cooked Hanwoo Beef by SPME-GC/MS Analysis vol.30, pp.1, 2009, https://doi.org/10.5851/kosfa.2010.30.1.73
  7. Effect of Linseed Oil Dietary Supplementation on Fatty Acid Composition and Gene Expression in Adipose Tissue of Growing Goats vol.2013, pp.None, 2009, https://doi.org/10.1155/2013/194625
  8. Diet high in α-linolenic acid up-regulate PPAR-α gene expression in the liver of goats vol.18, pp.3, 2009, https://doi.org/10.1016/j.ejbt.2015.03.009
  9. Effect of a Rumen-Protected Microencapsulated Supplement from Linseed Oil on the Growth Performance, Meat Quality, and Fatty Acid Composition in Korean Native Steers vol.11, pp.5, 2021, https://doi.org/10.3390/ani11051253