DOI QR코드

DOI QR Code

Effects of Dietary Zinc Level and an Inflammatory Challenge on Performance and Immune Response of Weanling Pigs

  • Sun, Guo-jun (Institute of Animal Nutrition, Sichuan Agricultural University) ;
  • Chen, Dai-wen (Institute of Animal Nutrition, Sichuan Agricultural University) ;
  • Zhang, Ke-ying (Institute of Animal Nutrition, Sichuan Agricultural University) ;
  • Yu, Bing (Institute of Animal Nutrition, Sichuan Agricultural University)
  • Received : 2008.11.09
  • Accepted : 2009.03.21
  • Published : 2009.09.01

Abstract

Two experiments were conducted to determine the effect of dietary zinc level on growth performance and immune function in normal (Experiment 1) and immunologically challenged (Experiment 2) weanling pigs. Treatments consisted of the following: i) a corn-soybean meal basal diet containing 36.75 mg/kg total Zn, ii) basal diet+60 mg/kg added Zn as $ZnSO_{4}$, iii) basal diet+120 mg/kg added Zn as $ZnSO_{4}$. Each diet was fed to six pens of four pigs per pen (Exp. 1) or six pens of three pigs per pen (Exp. 2). In Exp. 1, the dietary zinc level had no effect on average daily growth (ADG), average daily feed intake (ADFI), or feed conversion ratio (FCR). Concentrations of tissue and serum zinc were not affected. Peripheral blood lymphocyte proliferation (PBLP) was not affected by dietary treatments. Supplementation of 120 mg/kg Zn decreased (p<0.05) the antibody response to bovine serum albumin (BSA) on d 7 compared with pigs fed the basal diet, but not on d 14. In Exp. 2, LPS challenge had no effect on ADG, ADFI and FCR in the entire trial (from d 0 to 21). LPS challenge significantly decreased ADG and ADFI (p<0.01) from d 7 to 14, but FCR was not affected. LPS challenge increased PBLP (p<0.05) and serum concentration of interleukin-1 (IL-1) (p<0.01), whereas the antibody response to BSA and serum concentration of interleukin-2 (IL-2) were not affected. Supplementation of Zn did not affect ADFI and FCR from d 7 to 14, but there was a trend for ADG to be enhanced with Zn supplementation (p<0.10). Supplementation of Zn tended to increase PBLP (p<0.10). Dietary treatment had no effect on the antibody response to BSA or concentrations of serum IL-1 and IL-2. Results indicate that the level of Zn recommended by NRC (1998) for weanling pigs was sufficient for optimal growth performance and immune responses. Zn requirements may be higher for pigs experiencing an acute phase response than for healthy pigs.

Keywords

References

  1. Balaji, R., K. J. Wright, C. M. Hill, S. S. Dritz, E. L. Knoppel and J. E. Minton. 2000. Acute phase responses of pigs challenged orally with Salmonella typhimurium. J. Anim. Sci. 78:1885-1891 https://doi.org/10.1016/S0301-6226(03)00115-5
  2. Beisel, W. R. 1977. Metabolic and nutritional consequences of infection. In: Advances in nutritional research (Ed. H. H. Draper). Plenum, New York. p. 125
  3. Cheng, J., E. T. Kornegay and T. C. Schell. 1998. Influence of dietary lysine on the utilization of zinc from zinc sulfate and a zinc lysine complex by young pigs. J. Anim. Sci. 76:1064-1074
  4. Case, C. L. and M. S. Carlson. 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J. Anim. Sci. 80:1917-1924
  5. Groote, D. De., P. F. Zangerle, Y. Gevaert, M. F. Fassotte, Y. Beguin, F. Noizat-Pirenne, J. Pirenne, R. Gathy, M. Lopez and I. Dehart. 1992. Direct stimulation of cytokines (IL-1 beta, TNF-alpha, IL-6, IL-2, IFN-gamma and GM-CSF) in whole blood. I. Comparison with isolated PBMC stimulation. Cytokine. 4(3):239-248 https://doi.org/10.1016/1043-4666(92)90062-V
  6. Guo, G. L., Y. L. Liu, W. Fan, J. Han, Y. Q. Hou, Y. L. Yin, H. L. Zhu, B. Y. Ding, J. X. Shi, J. Lu, H. R. Wang, J. Chao and Y. H. Qiu. 2008. Effect of achyranthes bidentata polysaccharide on growth performance, immunological, adrenal, and somatotropic response of weaned pigs challenged with Escherichia coli lipopolysaccharide. Asian-Aust. J. Anim. Sci. 21:1189-1195
  7. Hellerstein, M. K., S. N. Meydani, M. Meydani, K. Wu and C. A. Dinarello. 1989. Interleukin-1-induced anorexia in the rat. Influence of prostaglandins. J. Clin. Invest. 84:228-235 https://doi.org/10.1172/JCI114145
  8. Hahn, J. D. and D. H. Baker. 1993. Growth and plasma zinc responses of young pigs fed pharmacological levels of zinc. J. Anim. Sci. 71:3020-3024
  9. Hall, V. L., R. C. Ewan and M. J. Wannemuehler. 1993. Effect of zinc deficiency and zinc source on performance and immune response in young pigs. J. Anim. Sci. 71(Suppl. 1):173(Abstr.)
  10. Hill, G. M., E. R. Miller, P. A. Whetter and D. E. Ullrey. 1983. Concentration of minerals in tissues of pigs from dams fed different levels of dietary zinc. J. Anim. Sci. 57:130-138
  11. Hill, G. M., G. L. Cromwell, T. D. Crenshaw, C. R. Dove, R. C. Ewan, D. A. Knabe, A. J. Lewis, G. W. Libal, D. C. Mahan, G. C. Shurson, L. L. Southern and T. L. Veum. 2000. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J. Anim. Sci. 78:1010-1016
  12. Ibs, K. H. and L. Rink. 2003. Zinc-altered immune function. J. Nutr. 133:1452S-1456S
  13. Jacobi, S. K., N. K. Gabler, K. M. Ajuwon, J. E. Davis and M. E. Spurlock. 2006. Adipocytes, myofibers, and cytokine biology: new horizons in the regulation of growth and body composition. J. Anim. Sci. 84(E. Suppl.): E140-E149
  14. Jiang, Z. Y., Z. Y. Xu, G. C. Huo, A. Wang and W. F. Liu. 1987. Effect of dietry zinc level on the blood biochemical parameters and tissue mineral concentrations in yong swine. J. Northeast Agricultural College 18:353-358 (in Chinese)
  15. Johnson, R. W. and E. von Borell. 1994. Lipopolysaccharideinduced sickness behavior in pigs is inhibited by pretreatment with indomethacin. J. Anim. Sci. 72:309-314
  16. Johnson, R. W. 1997. Inhibition of growth by pro-inflammatory cytokines: An integrated view. J. Anim. Sci. 75:1244-1255
  17. Johnson, R. W., J. Escobar and D. M. Webel. 2001. Nutrition and immunology of swine. In: Swine Nutrition, 2nd Ed. (Ed. J. Lewis, L. Lee Southern). CRC Press, Washington, DC. pp. 545-562
  18. Klasing, K. C., D. E. Laurin, R. K. Peng and D. M. Fry. 1987. Immunologically mediated growth depression in chicks: Influence of feed intake, corticosterone and interleukin-1. J. Nutr. 117:1629-1637
  19. Klasing, K. C. 1988. Nutritional aspects of leukocytic cytokines. J. Nutr. 118:1436-1446 https://doi.org/10.1016/S0899-9007(97)90871-6
  20. Klasing, K. C. 2001. Protecting animal health and well-being: nutrition and immune function. In: Scientific advances in animal nutrition. NRC. Natl. Acad. Press, Washington, DC. pp. 13-20
  21. Kegley, J., W. Spears and S. K. Auman. 2001. Dietary phosphorus and an inflammatory challenge affect performance and immune function of weanling pigs. J. Anim. Sci. 79:413-419
  22. Lalles, J. P., C. Favier and C. Jondreville. 2007. Diet moderately deficient in zinc induces limited intestinal alterations in weaned pigs. Livest. Sci. 108:153-155 https://doi.org/10.1016/j.livsci.2007.01.033
  23. Linda, S. T., F. N. Cheryl and J. F. Martin. 1988. Effects of Escherichia coli on iron, copper, and zinc metabolism in chicks. Avian Diseases, Vol. 32, No. 4 (Oct. - Dec.), pp. 779-786 https://doi.org/10.2307/1590998
  24. Liu, Y. L., D. F. Li, L. M. Gong, G. F. Yi, A. M. Gaines and J. A. Carroll. 2003. Effects of fish oil supplementation on the performance and the immunological, adrenal, and somatotropic responses of weaned pigs after an Escherichia coli lipopolysaccharide challenge. J. Anim. Sci. 81:2758-2765
  25. Liu, Y. L., J. J. Huang, Y. Q. Hou, H. L. Zhu, S. J. Zhao, B. Y. Ding, Y. L. Yin, G. F. Yi, J. X. Shi and W. Fan. 2008. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br. J. Nutr. 100:552-560 https://doi.org/10.1017/S0007114508911612
  26. Miller, E. R., R. W. Luecke, D. E. Ullrey, B. V. Baltzer, B. L. Bradley and J. A. Hoefer. 1968. Biochemical, squeletal and allometric changes due to zinc deficiency in the baby pig. J. Nutr. 95:278-286
  27. Mao, X. S., C. Piao, C. H. Lai, D. F. Li, J. J. Xing and B. L. Shi. 2005. Effects of $\beta$-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs. J. Anim. Sci. 83:2775-2782
  28. National Research Council. 1998. Nutrient requirements of swine. 10th Ed. National Academic Press, Washington, DC
  29. Rink, L. and H. Kirchner. 2000. Zinc-altered immune function and cytokine production. J. Nutr. 130:1407S-1411S
  30. Smith, M. P. Plumlee and W. M. Beeson. 1961. Zinc requirement of the growing pig fed isolated soybean protein semi-purified rations. J. Anim. Sci. 20:128-132
  31. Swinkels, J. W., E. T. Kornegay, W. Zhou, M. D. Lindemann, K. E. Webb, Jr. and M. W. A. Verstegen. 1996. Effectiveness of a zinc amino acid chelate and zinc sulfate in restoring serum and soft tissue zinc concentrations when fed to zinc-depleted pigs. J. Anim. Sci. 74:2420-2430
  32. Schell, T. C. and E. T. Kornegay. 1996. Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-Methionine, Zn-Lysine, or ZnSO4. J. Anim. Sci. 74:1584-1593
  33. Spears, J. W., E. S. Roberts, E. van Heugten, K. Lloyd and G. W. Almond. 2002. Dietary zinc effects on growth performance and immune response of endotoxemic growing pigs. Asian-Aust. J. Anim. Sci. 15:1496-1501
  34. Spurlock, M. E. 1997. Regulation of metabolism and growth during immune challenge: An overview of cytokine function. J. Anim. Sci. 75:1773-1783
  35. Van Heugten, E., J. W. Spears and M. T. Coffey. 1994. The effect of dietary protein on performance and immune response in weanling pigs subjected to an inflammatory challenge. J. Anim. Sci. 72:2661-2669
  36. Van Heugten, E., J. W. Spears, E. B. Kegley, J. D. Ward and M. A. Qureshi. 2003. Effects of organic forms of zinc on growth performance, tissue zinc distribution, and immune response of weanling pigs. J. Anim. Sci. 81:2063-2071
  37. Wannemacher, R. W. 1977. Key role of various individual amino acids in host response to infection. J. Clin. Nutr. 30:1269
  38. Whitenack, D. L., C. K. Whitehair and E. R. Miller. 1978. Influence of enteric infection on zinc utilization and clinical signs and lesions of zinc deficiency in young swine. Am. J. Vet. Res. 39:1447-1454
  39. Wedekind, K. J., A. J. Lewis, M. K. Giesemann and P. S. Miller. 1994. Bioavailability of zinc from inorganic and organic sources for pigs fed corn-soybean meal diets. J. Anim. Sci. 72:2681-2689