Molecular phylogeny of Astilbe: Implications for phylogeography and morphological evolution

노루오줌속(Astilbe)의 분자 계통: 계통지리 및 형질 진화에 대한 고찰

  • 김상용 (국립수목원 산림생물조사과) ;
  • 김성희 (한림대학교 생명과학과) ;
  • 신현철 (순천향대학교 생명과학과) ;
  • 김영동 (한림대학교 생명과학과)
  • Published : 2009.03.31

Abstract

Astilbe (Saxifragaceae) is a genus well known for its disjunctive distribution in Asia and eastern North America. In this study, we reconstructed a molecular phylogeny of the genus using the sequences of ITS regions of nuclear ribosomal DNA. A total of 17 species representing major lineage of Astilbe and closely related taxa were included in the phylogenetic analyses. We obtained a Bayesian phylogenetic tree in which Saxifragopsis was positioned as a sister group to Astilbe. The Japanese endemic species, A.platyphylla was the most basal lineage within the genus. This species is well known for its distinct morphological features such as unisexual flowers, apetaly, and calyx with 7-11 lobes. Two species, A. biternata, a New World representative of the genus, and A. rivularis widely distributed in S. Asia, branched off early in the evolution of Astilbe. The remaining species formed a strongly supported core clade, which diverged into two robust geographical lineages: the first ("Japonica" clade) of species distributed in Japan, Taiwan, and Philippines and the other ("Rubra" clade), of taxa in China and Korea. The ITS phylogeny indicates that the Bering land bridges were the major route for the origin and dispersal of A. biternata. The two Taiwanese taxa and A. philippinensis were found to derive from the Japanese member, as the genus advanced southwards. The ITS phylogeny suggests that apetaly originated independently at least two times within the genus. Our results do not support Engler's classification system of the genus based on the leaf type (simple vs. compound), but reaffirm Hara's taxonomic idea which primarily considered the features of calyx.

노루오줌속(Astilbe)은 동아시아와 북미 동부에 격리되어 분포하는 양상을 보이는 속으로 잘 알려져 있다. 본 연구에서는 노루오줌속 및 근연 속을 대표하는 17종의 핵 리보솜 DNA의 ITS 염기서열에 기초한 계통수를 제작하여 노루오줌속의 분류, 형질 진화 및 계통지리에 대하여 고찰하였다. 베이스 추론법 등을 통해 계통수를 제작한 결과 Saxifragopsis가 노루오줌속의 자매군임이 확인되었고, 단성화, 무화피화, 7~11개로 갈라지는 꽃받침 등의 형질상태를 지니는 것으로 알려진 일본 고유종, A. platyphylla는 노루오줌속 계통수의 기부에서 가장 먼저 분리되었다. 북미에 격리 분포하는 분류군인 A. biternata 및 중국과 동남아시아에 분포하는 A. rivularis는 노루오줌속의 진화 초기에 갈라진 것으로 밝혀졌다. 한편, 화피가 있는 나머지 종들은 하나의 핵심군으로 확고하게 무리를 지었다. 핵심군 내에서는 일본, 대만, 필리핀 등지에 분포하는 종들("Japonica" clade) 이 단계통군을 이루었고, 중국 및 한국에 분포하는 종인 A. rubra var. rubra(노루오줌)과 A. koreana(숙은노루오줌), 즉 "Rubra" clade는 이들과 명확히 구분되는 진화 계열로 나타났다. A. biternata의 기원과 격리분포는 베링육교(Bering land bridges)를 통해 이루어진 것으로 추정되었다. 대만에 분포하는 2종과 A. philippinensis는 일본에 분포하는 분류군이 남하하면서 갈라져 나온 것으로 해석되었다. 노루오줌속 내에서 무화피화는 원시적 형질상태였으며, 이 형질상태는 적어도 두 개의 진화 계열에서 각각 독립적으로 기원하였을 것으로 추정되었다. 본 연구결과는 노루오줌속을 분류함에 있어서 잎의 유형(단엽/복엽)을 중요시했던 Engler의 분류 체계를 지지하지 않았으며, 꽃받침의 형태를 일차적으로 고려했던 Hara의 분류 견해를 지지하였다.

Keywords

Acknowledgement

Supported by : 국립수목원

References

  1. Chung, Y. H., B. Y. Sun and Y. C. Chung. 1983. Monographic study of the endemic plants in Korea III. Taxonomic and interspecific relationships of the genus Astilbe. Kor. J. Bot. 26: 73-9 (in Korean)
  2. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15 https://doi.org/10.1016/0031-9422(80)85004-7
  3. Engler, A. and K. Prantl. 1930. Die natrlichen Pflanzenfamilien, Band 18a, Verlag von Wilhelm Engelmann, Leipzig. Pp. 112-115
  4. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  5. Hara, H. 1939. Astilbe. In Nova Flora Japonica 3. Nakai, T. and M. Honda (eds.), Sanseido, Tokyo. Pp. 6-27
  6. Huelsenbeck, J. P., B. Larget, R. E. Miller and F. Ronquist. 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst. Biol. 51: 673-688 https://doi.org/10.1080/10635150290102366
  7. Kim, Y. D. 2007. Astilbe. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.), Academy Publishing Co., Seoul. Pp. 523-524
  8. Loockerman, D. J. and R. K. Jansen. 1996. The use of herbarium material for DNA studies. In Sampling the green world. Stussey, T.F. and S. Sohmer (eds.), Columbia University Press, New York. Pp. 205-220
  9. Li, H.-L. 1952. Floristic relationships between eastern Asia and eastern North America. Trans. Am. Philos. Soc. 42: 371-429 https://doi.org/10.2307/1005654
  10. Mabberley, D. J. 1987. The plant book. Cambridge Univ. Press, Cambridge. P. 50
  11. Ohba, H. 2002. Astilbe. In Flora of Japan. Vol. II. Iwatsuki, K. et al. (eds.), Kodansha Ltd, Tokyo. Pp. 41-46
  12. Palmer, J. D. 1986. Isolation and structural analysis of chloroplast DNA. Meth. Enzymol. 118: 167-186 https://doi.org/10.1016/0076-6879(86)18072-4
  13. Pan, J.-T. 1995. A Study on the Tribe Astilbeae Miq. (Saxifragaceae). Acta Phytotax. Sinica. 33: 390-402 (in Chinese)
  14. Pan, J.-T. and H. Ohba. 2001. Astilbe. In Flora of China Vol. 8. Wu, Z.-y. and P.H. Raven, MBG press, St. Louis. Pp. 274-276
  15. Ronquist, F. and J. P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574 https://doi.org/10.1093/bioinformatics/btg180
  16. Small, J. K. 1896. Two new genera of Saxifragaceae. Bull. Torrey Bot. Club 23: 18-20 https://doi.org/10.2307/2996962
  17. Soltis, D. E., L. A. Johnson and C. Looney. 1996. Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae). Syst. Bot. 21: 169-185 https://doi.org/10.2307/2419746
  18. Soltis, D. E., R. K. Kuzoff, M. E. Mort, M. Zanis, M. Fishbein, L Hufford, J. Koontz and M. K. Arroyo. 2001. Elucidating deeplevel phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions. Ann. Missour Bot. Gard. 88: 669-693 https://doi.org/10.2307/3298639
  19. Swofford, D. L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods) ver. 4.0b, Sinauer Associates, Sunderland, MA
  20. Tavar, S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Lect. Math. Life Sci. 17: 57-86 https://doi.org/10.1016/0024-3205(75)90235-0
  21. Thompson, J. D., D. G. Higgins and T. J. Gibson. 1995. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  22. Tiffney, B. H. 1985a. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J. Arnold Arbor. 66: 73-94
  23. Tiffney, B. H. 1985b. The Eocene North Atlantic Land Bridge: Its importance in tertiary and modern phytogeography of the northern hemisphere. J. Arnold Arbor. 66: 243-273
  24. Wen, J. 1999. Evolution of eastern Asia and eastern North America disjunct distributions in flowering plants. Ann. Rev. Ecol. Syst. 30: 421-455 https://doi.org/10.1146/annurev.ecolsys.30.1.421
  25. White, T. J., T. Birns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A guide to methods and applications. Innis, M.A., D.H. Gelfand, J.J. Sninsky and T.J. White (eds), Academic Press, Inc., San Diego. Pp. 315-322