Characterization of Supported Lipid Layers Using Atomic Force Microscopy

원자힘현미경을 이용한 지지 지질층의 특성규명

  • Park, Jin-Won (College of Bionanotechnology, Kyungwon University)
  • 박진원 (경원대학교 바이오나노대학)
  • Received : 2009.04.20
  • Accepted : 2009.06.19
  • Published : 2009.08.31

Abstract

The atomic force microscopy(AFM) has been used, as a powerful tool, to investigate physical properties of supported-lipid layers. Prior to the advent of the AFM, no observation was performed for the physical phenomena at the nanometer-scale. This microscope provides nanometer-scale morphology by scanning surfaces with the cantilever and presents force curve by monitoring the behavior of the cantilever that approaches to surface and retracts from the surface. From the morphology, the structures of the supported lipid layer and the effect of other molecules on the structures have been investigated. From the force curve, the surface properties-electrostatic and mechanical properties-of the supported lipid layers have been studied. In this article, characterization of the structure and surface properties of the supported lipid layer is explained. Future perspectives and direction are also discussed.

원자힘현미경은 초미세크기의 물리적 특성을 규명하기 위한 수단으로서 지지 지질층의 물리적특성 규명에 이용되어 왔다. 원자힘현미경이 출현하기 이전에는 초미세관점에서 지지 지질층에서 발생하는 물리적 현상의 관찰이 전무하였다. 이 현미경은 탐침바늘(Cantilever)로 표면을 주사(Scanning)함으로써 표면의 초미세 형상(Morphology)을 제공하고 표면에 접근(Approach)했다가 후퇴(Retraction)하는 탐침바늘의 거동을 모니터링함으로써 힘곡선(Force Curve)을 나타낼 수 있다. 형상 파악을 통해 지지 지질층의 구조와 막 단백질이 지질층의 구조에 미치는 영향을 밝히는 연구가 진행되어 왔으며, 힘곡선을 통하여 지지 지질층 표면 특성-기계적 정전기적 특성-에 대한 연구가 진행되었다. 본 총설에서는 원자힘현미경을 이용하여 현재까지 진행된 지지 지질층의 구조와 표면 특성 연구에 대하여 소개하고 향후 연구 진행 방향에 대하여 논의하고자 한다.

Keywords

Acknowledgement

Supported by : 경원대학교, 한국학술진흥재단

References

  1. Ringsdorf, H., Schlarb, B. and Venzmer, J., "Molecular Architecture and Function of Polymeric Oriented Systems – Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes," Angew. Chem-Int. Edit, 27(1), 113-158(1988) https://doi.org/10.1002/anie.198801131
  2. Goksu, E. I., Vanegas, J. M., Blanchette, C. D., Lin, W. C. and Longo, M. L., "AFM for Structure and Dynamics of Biomembranes," Biochem. Biophys. acta-Biomembranes, 1788(1), 254-266 (2009) https://doi.org/10.1016/j.bbamem.2008.08.021
  3. Mossman, K. and Groves, J., "Micropatterned Supported Membranes as Tools for Quantitative Studies of the Immunological Synapse," Chem. Soc. Rev., 36(1), 46-54(2007) https://doi.org/10.1039/b605319j
  4. Janshoff, A. and Steinem, C., "ransport across Artificial Membranes - an Analytical Perspective,"Anal. Bioanalytical Chem., 385(3), 433-451(2006) https://doi.org/10.1007/s00216-006-0305-9
  5. Rossetti, F. F., Textor, M. and Reviakine, I., "Asymmetric Distribution of Phosphatidyl Serine in Supported Phospholipid Bilayers on Titanium Dioxide," Langmuir, 22(8), 3467-3473(2006) https://doi.org/10.1021/la053000r
  6. Groves, J. T. and Dustin, M. L., 'Supported Planar Bilayers in Studies on Immune Cell Adhesion and Communication,' J. Immunol. Methods, 278(1-2), 19-32(2003) https://doi.org/10.1016/S0022-1759(03)00193-5
  7. Tanaka, M. and Sackmann, E., "Polymer-supported Membranes as Models of the Cell Surface," Nature, 437(7059), 656-663(2005) https://doi.org/10.1038/nature04164
  8. Twardowski, M. and Nuzzo, R. G., "Molecular Recognition at Model Organic Interfaces: Electrochemical Discrimination Using Self-assembled Monolayers(SAMs) Modified via the Fusion of Phospholipid Vesicles," Langmuir, 19(23), 9781-9791(2003) https://doi.org/10.1021/la0349018
  9. Leckband, D. and Israelachvili, J., "Intermolecular Forces in Biology," Quarterly Reviews of Biophysics, 34(2), 105-267(2001) https://doi.org/10.1017/S0033583501003687
  10. Sinner, E. K. and Knoll, W., "Functional Tethered Membranes," Current Opinion in Chemical Biology, 5(6), 705-711(2001) https://doi.org/10.1016/S1367-5931(01)00269-1
  11. Boxer, S. G., "Molecular Transport and Organization in Supported Lipid Membranes," Current Opinion in Chemical Biology, 4(6), 704-709(2000) https://doi.org/10.1016/S1367-5931(00)00139-3
  12. Castellana, E. T. and Cremer, P. S., "Solid Supported Lipid Bilayers:From Biophysical Studies to Sensor Design," Surface Science Reports, 61(10), 429-444(2006) https://doi.org/10.1016/j.surfrep.2006.06.001
  13. Anrather, D., Smetazko, M., Saba, M., Alguel, Y. and Schalkhammer, T., 'Supported Membrane Nanodevices,' J. Nanosci. Nano-technol., 4(1-2), 1-22(2004) https://doi.org/10.1166/jnn.2004.226
  14. Groves, J. T., 'Membrane Array Technology for Drug Discovery,' Current Opinion in Drug Discovery & Development, 5(4), 606-612(2002)
  15. Cooper, M. A., "Advances in Membrane Receptor Screening and Analysis," Journal of Molecular Recognition, 17(4), 286-315(2004) https://doi.org/10.1002/jmr.675
  16. Troutier, A. L. and Ladaviere, C., "An Overview of Lipid Membrane Supported by Colloidal Particles," Advances in Colloid and Interface Science, 133(1), 1-21(2007) https://doi.org/10.1016/j.cis.2007.02.003
  17. Sackmann, E., "Supported Membranes: Scientific and Practical Applications," Science, 271(5245), 43-48(1996) https://doi.org/10.1126/science.271.5245.43
  18. Tero, R., Ujihara, T. and Urisut, T., "Lipid Bilayer Membrane with Atomic Step Structure: Supported Bilayer on a Step-and-Terrace TiO2(100) Surface," Langmuir, 24(20), 11567-11576(2008) https://doi.org/10.1021/la801080f
  19. Grigoriev, D. O., Kragel, J., Akentiev, A. V., Noskov, B. A., Miller, R. and Pison, U., "Relation between Rheological Properties and Structural Changes in Monolayers of Model Lung Surfactant under Compression," Biophys. Chem., 104(3), 633-642(2003) https://doi.org/10.1016/S0301-4622(03)00124-8
  20. Caffrey, M. and Wang, J., 'Membrane-structure Studies Using X-ray Standing Waves,' Annu. Rev. Biophys Biomolecular Struct., 24, 351-377(1995) https://doi.org/10.1146/annurev.bb.24.060195.002031
  21. Oleson, T. A. and Sahai, N., "Oxide-dependent Adsorption of a Model Membrane Phospholipid, Dipalmitoylphosphatidylcholine: Bulk Adsorption Isotherms," Langmuir, 24(9), 4865-4873(2008) https://doi.org/10.1021/la703599g
  22. Leverette, C. L. and Dluhy, R. A., 'Vibrational Characterization of a Planar-supported Model Bilayer System Utilizing Surfaceenhanced Raman Scattering (SERS) and Infrared Reflection-absorption Spectroscopy (IRRAS),' Colloids and Surfaces A-Physicochemical and Engineering Aspects, 243(1-3), 157-167(2004) https://doi.org/10.1016/j.colsurfa.2004.05.020
  23. McArthur, S. L., Halter, M. W., Vogel, V. and Castner, D. G., "Covalent Coupling and Characterization of Supported Lipid Layers," Langmuir, 19(20), 8316-8324(2003) https://doi.org/10.1021/la026928h
  24. Binnig, G., Quate, C. F. and Gerber, C., "Atomic Force Microscope," Phys. Rev. Lett., 56(9), 930-933(1986) https://doi.org/10.1103/PhysRevLett.56.930
  25. Park, J.-W. and Ahn, D. J., "Temperature Effect on Nanometerscale Physical Properties of Mixed Phospholipid Monolayers," Colloids and Surfaces B-Biointerfaces, 62(1) 157-161(2008) https://doi.org/10.1016/j.colsurfb.2007.09.020
  26. Berquand, A., Levy, D., Gubellini, F., Le Grimellec, C. and Milhiet, P. E., 'Influence of Calcium on Direct Incorporation of Membrane Proteins into In-plane Lipid Bilayer,' Ultramicroscopy, 107(10-11), 928-933(2007) https://doi.org/10.1016/j.ultramic.2007.04.008
  27. Lei, S. B., Tero, R., Misawa, N., Yamamura, S., Wan, L. J. and Urisu, T., 'AFM Characterization of Gramicidin-A in Tethered Lipid Membrane on Silicon Surface,' Chem. Phys. Lett., 429(1-3), 244-249(2006) https://doi.org/10.1016/j.cplett.2006.07.091
  28. Song, C. S., Ye, R. Q. and Mu, B. Z., 'Molecular Behavior of a Microbial Lipopeptide Monolayer at the Air-water Interface,' Colloids and Surfaces A-Physicochemical and Engineering Aspects, 302(1-3), 82-87(2007) https://doi.org/10.1016/j.colsurfa.2007.01.055
  29. Zhong, J., Zheng, W. F., Huang, L. X., Hong, Y. K., Wang, L. J., Qiu, Y. and Sha, Y. L., 'PrP106-126 Amide Causes the Semipenetrated Poration in the Supported Lipid Bilayers,' Biochimica et Biophysica acta-Biomembranes, 1768(6), 1420-1429(2007) https://doi.org/10.1016/j.bbamem.2007.03.003
  30. Weisenhorn, A. L., Egger, M., Ohnesorge, F., Gould, S. A. C., Heyn, S. P., Hansma, H. G., Sinsheimer, R. L., Gaub, H. E. and Hansma, P. K., "Molecular-Resolution Images of Langmuir-Blodgett-Films and DNA by Atomic Force Microscopy," Langmuir, 7(1), 8-12(1991) https://doi.org/10.1021/la00049a003
  31. Reviakine, I., Bergsma-Schutter, W., Mazeres-Dubut, C., Govorukhina, N. and Brisson, A., "Surface Topography of the p3 and p6 Annexin V Crystal Forms Determined by Atomic Force Microscopy," J. Struct. Biol., 131(3), 234-239(2000) https://doi.org/10.1006/jsbi.2000.4286
  32. Prim, N., Iversen, L., Diaz, P. and Bjomholm, T., "Atomic Force Microscope Studies on the Interactions of Candida Rugosa Lipase and Supported Lipidic Bilayers," Colloids and Surfaces B-Biointerfaces, 52(2), 138-142(2006) https://doi.org/10.1016/j.colsurfb.2006.05.018
  33. Mou, J. X., Yang, J., Huang, C. and Shao Z. F., "Alcohol induces Interdigitated Domains in Unilamellar Phosphatidylcholine Bilayers," Biochemistry, 33(33), 9981-9985(1994) https://doi.org/10.1021/bi00199a022
  34. Schneider, J., Barger, W. and Lee, G. U, "Nanometer Scale Surface Properties of Supported Lipid Bilayers Measured with Hydrophobic and Hydrophilic Atomic Force Microscope Probes," Langmuir, 19(5), 1899-1907(2003) https://doi.org/10.1021/la026382z
  35. Park, J.-W. and Lee, G. U, "Properties of Mixed Lipid Monolayers Assembled on Hydrophobic Surfaces through Vesicle Adsorption," Langmuir, 22(11), 5057-5063(2006) https://doi.org/10.1021/la060688e
  36. Derjaguin, B., 'On the Repulsive Forces between Charged Colloid Particles and on the Theory of Slow Coagulation and Stability of Lyophobe Sols,' Trans. Faraday Soc., 35(3), 203-214(1940) https://doi.org/10.1039/TF9403500203
  37. Brian, A. A. and McConnell, H. M., "Allogeneic Stimulation of Cytotoxic T cells by Supported Planar Membranes," Proc. Natl. Acad. Sci. USA, 81(19), 6159-6163(1984) https://doi.org/10.1073/pnas.81.19.6159
  38. Blodgett, K. A. and Langmuir, I., "Built-up Films of Barium Stearate and their Optical Properties," Phys. Rev., 51(11), 964-982(1937) https://doi.org/10.1103/PhysRev.51.964
  39. Tamm, L. K. and McConnell, H. M., "Supported Phospholipidbilayers," Biophys. J., 47(1), 105-113(1985) https://doi.org/10.1016/S0006-3495(85)83882-0
  40. Schneider, J. S., Dufrêne, Y. F., Barger, W. R. and Lee, G. U, "Atomic Force Microscope on Supported Lipid Bilayers," Biophys. J., 79(2), 1107- 1118(2000) https://doi.org/10.1016/S0006-3495(00)76364-8
  41. Park, J.-W., "Individual Leaflet Phase Effect on Nanometer-scale Surface Properties of Phospholipid Bilayers," Colloids and Surfaces B-Biointerfaces, 71(1), 128-132(2009) https://doi.org/10.1016/j.colsurfb.2009.01.017
  42. Maugis, D., Contact, Adhesion. and Rupture of Elastic Solids, Springer-Verlag, Berlin, 240-262(2000)
  43. Verwey, E. J. W. and Overbeek, J. T. G., Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51-63(1948)
  44. Engel, A., Gaub, H. E. and Müller, D. J., "Atomic Force Microscopy: NA Forceful Way with Single Molecules," Curr. Biol., 9(4), R133-R136(1999) https://doi.org/10.1016/S0960-9822(99)80081-5