Study of CO2 Carbonation-Regeneration Characteristics of Potassium-Based Dry Sorbents According to Water Vapor Contents of Inlet Gas and Regeneration Temperature in the Cycle Experiments of Bubbling Fluidized-Bed Reactor

회분식 기포유동층 반응기에서 K-계열 건식흡수제의 주입수분농도 및 재생반응온도에 따른 CO2 흡수-재생 반응특성 연구

  • Park, Keun-Woo (Department of Environmental Engineering, Deajeon University) ;
  • Park, Yeong Seong (Department of Environmental Engineering, Deajeon University) ;
  • Park, Young Cheol (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Jo, Sung-Ho (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Yi, Chang-Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 박근우 (대전대학교 환경공학과) ;
  • 박영성 (대전대학교 환경공학과) ;
  • 박영철 (한국에너지기술연구원 온실가스연구단) ;
  • 조성호 (한국에너지기술연구원 온실가스연구단) ;
  • 이창근 (한국에너지기술연구원 온실가스연구단)
  • Received : 2009.03.09
  • Accepted : 2009.04.21
  • Published : 2009.06.30

Abstract

In this study, a bubbling fluidized-bed reactor was used to study $CO_2$ capture from flue gas using a potassium-based dry sorbent. A dry sorbent, manufactured by the Korea Electric Power Research Institute, consists of 35% of $K_2CO_3$ for $CO_2$ absorption and 65% of supporters for mechanical strength. $H_2O$, a reactant of the carbonation reaction, was supplied in the reactor as a form of saturated water vapor at a given temperature. The experiment of the regeneration reaction was performed by raising up to a given temperature using $N_2$ as a fluidization gas. It was indicated that sorption capacity and regenerability of dry sorbents showed high-efficiency at $1.97\;mol\;H_2O/mol\;CO_2$ and $400^{\circ}C$, respectively. The regenerated sorbent samples were analyzed by TGA to confirm the extent of the reaction. When the regeneration temperature was $150^{\circ}C$, the regenerability of dry sorbents was about 60%, which was capable of applying those sorbents to a two-interconnected fluidized-bed reactor system with continuous solid circulation. The results obtained in this study can be used as basic data for designing and operating a large scale $CO_2$ capture process with two fluidized-bed reactors.

본 연구에서는 전력연구원으로부터 공급받은 K-계열 건식흡수제를 이용하여 회분식 기포유동층 반응기에서 흡수-재생 반복실험을 통한 $H_2O$ 주입농도 및 재생온도에 따른 반응 특성을 살펴보았다. K-계열 건식흡수제는 $CO_2$ 흡수를 위한 탄산칼륨과 내마모성과 기계적 강도를 위한 지지체로 구성되어 있다. 흡수반응과 재생반응 특성을 살펴보기 위해 처음 한 시간 동안 흡수반응을 수행하고 다음 한 시간 동안 재생반응을 수행하는 과정을 3차례 반복하여 실험하였다. $H_2O$ 농도의 영향을 파악하기 위해서 흡수반응은 $70^{\circ}C$에서 $H_2O$ 농도를 7.3, 12.2, 19.7, 30.8%로 변화하여 실험을 수행하였으며 재생반응은 $N_2$ 기체를 유동화기체로 사용하여 $150^{\circ}C$에서 수행하였다. 재생온도의 영향을 파악하기 위해서는 흡수반응에서의 $H_2O$ 농도를 12.2%에 고정한 상태에서 재생온도를 150, 200, 300, $400^{\circ}C$로 변화하여 실험을 수행하였다. 수분 함량이 $1.97\;mol\;H_2O/mol\;CO_2$인 경우 흡수반응에서 흡수율이 가장 우수함을 확인하였다. 또한 재생온도가 $400^{\circ}C$에서 가장 높은 재생율을 보이는 것을 확인하였다. 재생온도가 $150^{\circ}C$에서 재생율은 대략 60% 정도였으며 실제 두개의 유동층 반응기를 가진 연속장치의 경우 부분적인 재생을 유지하면서 운전이 수행되기 때문에 재생온도는 $150^{\circ}C$ 이상이면 적절하다고 판단된다. 실제 연속운전에서는 적절한 고체순환량을 결정하는 고체이용율과 재생에너지를 결정하는 재생온도 사이에 절충점이 존재하며 본 실험에서 얻은 데이터가 연속장치의 설계와 운전에 중요한 기초자료가 될 것이다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. Bartoo, R. K., 'Removing Acid Gas by the Benfield Process,' Chem. Eng. Prog., 80(10), 35-39(1984)
  2. Metz, B., Davidson, O., de Coninck, H., Loos, M. and Meyer, L., IPCC special report on carbon dioxide capture and storage, Cambridge University Press, New York(2005)
  3. Lee, S. C., Choi, B. Y., Ryu, C. K., Ahn, Y. S., Lee, T. J. and Kim, J. C., "The Effect of Water on the Activation and the $CO_2$ Capture Capacities of Alkali Metal-Based Sorbents," Korean J. Chem. Eng., 23(3), 374-379(2006) https://doi.org/10.1007/BF02706737
  4. Yi, C. K., Hong, S. W., Jo, S. H., Son, J. E. and Choi, J. H., 'Absorption and Regeneration Characteristics of a Sorbent for Fluidized- Bed $CO_2$ Removal Process,' Korean Chem. Eng. Res., 43(2), 294-298(2005)
  5. Kunii, D. and Levenspiel, O., Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, U.S.A(1991)
  6. Seo, Y., Jo, S. H., Ryu, H. J., Bae, D. H., Ryu, C. K. and Yi, C. K., "Effect of Water Pretreatment on $CO_2$ Capture Using a Potassium- Based Solid Sorbent in a Bubbling Fluidized Bed Reactor," Korean J. Chem. Eng., 24(3), 457-460(2007) https://doi.org/10.1007/s11814-007-0079-6
  7. Seo, Y., Jo, S. H., Ryu, C. K. and Yi, C. K., "Effects of Water Vapor Pretreatment Time and Reaction Temperature on $CO_2$ Capture Characteristics of a Sodium-based Sorbent in a Bubbling Fluidized- bed Reactor," Chemosphere, 69(5), 712-718(2007) https://doi.org/10.1016/j.chemosphere.2007.05.036
  8. Yi, C. K., Jo, S. H., Seo, Y., Lee, J. B. and Ryu, C. K., "Continuous Operation of the Potassium-based Dry Sorbent $CO_2$ Capture Process with Two Fluidized-bed Reactors," Int. J. Greenhouse Gas Control, 1(1), 31-36(2007) https://doi.org/10.1016/S1750-5836(07)00014-X
  9. Yi, C. K., Jo, S. H., Seo, Y., Park, S. D., Moon, K. H., Yoo, J. S., Lee, J. B. and Ryu, C. K., "$CO_2$ Capture Characteristics of Dry Sorbents in a Fast Fluidized Reactor," Stud. Surf. Sci. Catal., 159, 501-504(2006) https://doi.org/10.1016/S0167-2991(06)81643-5
  10. Yi, C. K., Jo, S. H. and Seo, Y., "The Effect of Voidage on the $CO_2$ Sorption Capacity of K-Based Sorbent in a Dual Circulating Fluidized Bed Process," J. Chem. Eng. Japan, 41(7), 691-694(2008) https://doi.org/10.1252/jcej.07WE064
  11. Park, Y. C., Park, K. W., Park, Y. S., Jo, S. H. and Yi, C. K., "Effect of Bed Height on Carbon Dioxide Capture by Carbonation/regeneration Cyclic Operations Using Dry Potassium-based Sorbents," Koran J. Chem. Eng., 26(3), 874-878(2009) https://doi.org/10.1007/s11814-009-0146-2
  12. Park, Y. C., Jo, S. H., Ryu, C. K. and Yi, C. K., 'Long-term Operation of Carbon Dioxide Capture System from a Real Coal-fired Flue Gas Using Dry Regenerable Potassium-based Sorbents', 9th International Conference on Greenhouse Gas Control Technologies, November, Washington DC(2008)
  13. Kyaw, K., Shibata, T., Watanabe, F., Matsuda, H. and Hasatani, M., "Applicability of Zeolite for $CO_2$ Storage in a $CaO-CO_2$ High Temperature Energy Storage System," Energy Convers. Mgmt, 38(10), 1025-1033(1997) https://doi.org/10.1016/S0196-8904(96)00132-X
  14. Ding, Y. and Alpay, E., "Equilibria and Kinetics of $CO_2$ Adsorption on a Hydrotalcite Adsorbent," Chemical Eng. Science, 55(17), 3461-3474(2000) https://doi.org/10.1016/S0009-2509(99)00596-5
  15. Yasyerli, S., Dogu, G., Ar, I. and Dogu, T., "Breakthrough Analysis of $H_2S$ Removal on Cu-V-Mo, Cu-V, and Cu-Mo Mixed Oxides", Chem. Eng. Comm., 190(5), 1055-1072(2003) https://doi.org/10.1080/00986440302101
  16. Ramachandran, P. A. and Kulkarni, B. D., "Approximate Analytical Solution to Gas-Solid Noncatalytic Reaction Problem," Ind. Eng. Chem. Res. Process Des. Dev., 19(4), 717-719(1980) https://doi.org/10.1021/i260076a036
  17. Hirano, S., Shigomoto, N., Yamada, S. and Hayashi, H., "Cyclic Fixed-Bed Operations Over K2CO3-on-Carbon for the Recovery of Carbon Dioxide under Moist Conditions," Bull. Chem. Soc. Jpn., 68(3), 1030-1038(1995) https://doi.org/10.1246/bcsj.68.1030
  18. Liang, Y., Harrison, D. P., Gupta, R. P., Green, D. A. and McMichael, W. J., "Carbon Dioxide Capture using Dry Sodium-Based Sorbents," Energy & Fuels, 18(2), 569-575(2004) https://doi.org/10.1021/ef030158f