전기펜톤공정을 이용한 석유화학공장 폐활성슬러지의 감량화 가능성 평가

A study on reduction of excess sludge in activated sludge system from a petrochemical plant using electro fenton process

  • 정종민 (한국과학기술연구원 환경기술연구단) ;
  • 김경일 (한국과학기술연구원 환경기술연구단) ;
  • 심나타리아 (한국과학기술연구원 환경기술연구단) ;
  • 박철희 ((주) SK 기술원) ;
  • 이상협 (한국과학기술연구원 환경기술연구단)
  • 투고 : 2009.08.24
  • 심사 : 2009.10.12
  • 발행 : 2009.10.15

초록

The reduction of excess activated sludge from petrochemical plant was investigated by the electro fenton (E-Fenton) process using electrogenerated hydroxyl radicals which lead to mineralization of activated sludge to $CO_2$, water and inorganic ions. Factors affecting the disintegration efficiency of excess activated sludge in E-Fenton process were examined in terms of five criteria: pH, $H_2O_2/Fe^{2+}$ molar ratio, current density, initial MLSS (mixed liquid suspended solids) concentration, $H_2O_2$ feeding mode. TSS total suspended solid and $TCOD_{cr}$ reduction rate increased with the increasing $H_2O_2/Fe^{2+}$ molar ratio and current density until 42 and $6.7 mA/cm^2$, respectively but further increase of $H_2O_2/Fe^{2+}$ molar ratio and current density would reduce the reduction rate. On the other hand, as expected, increasing pH and initial MLSS concentration of activated sludge decreas TSS and $TCOD_{cr}$ reduction rate. The E-Fenton process was gradually increased during first 30 minutes and then linearly proceed till 120 minutes. The optimal E-Fenton condition showed TSS reduction rate of 62~63% and $TCOD_{cr}$ (total chemical oxygen demand) reduction rate of 55~56%. Molar ratio $H_2O_2/Fe^{2+} = 42$ was determined as optimal E-Fenton condition with initial $Fe^{2+}$ dose of 5.4 mM and current density of $6.7{\sim}13.3 mA/cm^2$, initial MLSS of 7,600 mg/L and pH 2 were chosen as the most efficient E-Fenton condition.

키워드

과제정보

연구 과제 주관 기관 : (주) SK 에너지

참고문헌

  1. APHA, AWWA, and WEF, Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, WashingtonD.C.,USA,1998
  2. Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X. and Casado, J. (1998) Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes, Appl. Catal B-Environ., 16, pp. 31-42 https://doi.org/10.1016/S0926-3373(97)00059-3
  3. Buys, B.R., Klapwijk, A., Elissen, H. and Rulkens, W. H. (2008) Development of a test method to assess the sludge reduction potential of aquatic organisms in activated sludge, Bioresource Technol., 99, pp. 8360-8366 https://doi.org/10.1016/j.biortech.2008.02.041
  4. Buyukkamaci, N. (2004) Biological sludge conditioning by Fenton's reagent, Process Biochem., 39, pp. 1503-1506 https://doi.org/10.1016/S0032-9592(03)00294-2
  5. Celin, S. M., Pandit, M., Kapoor, J.C. and Sharma R.K. (2003) Studies on photo-degradation of 2,4-dinitro toluene in aqueous phase. Chemosphere, 53, pp. 63-69 https://doi.org/10.1016/S0045-6535(03)00358-8
  6. Daneshvar, N. Oladegaragoze, A. and Djafarzadeh, N. (2006) Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters, J. Hazard. Mater., 129, pp. 116-122 https://doi.org/10.1016/j.jhazmat.2005.08.033
  7. Hirooka, K., Asano, R., Yokoyama, A., Okazaki, M., Sakamoto, A. and Nakai, Y. (2009) Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: Case study of an on-farm wastewater treatment plant, Bioresource Technol., 100, pp. 3161-3166 https://doi.org/10.1016/j.biortech.2009.01.011
  8. Hsueh, C. L. Huang, Y. H. Wang, C. C. and Chen, C. Y. (2005) Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, 58, pp. 1409-1414 https://doi.org/10.1016/j.chemosphere.2004.09.091
  9. Huang, Y. H., Chen, C. C., Huang, G. H. and Chou, S. S. (2001) Comparison of a novel electro-fenton method with Fenton's reagent in treating a highly contaminated wastewater, Water Sci. Technol., 43, pp. 17-24
  10. Jirasripongpun, K. (2002) The characterization of oil-degrading microorganisms from lubricating oil contaminated (scale) soil, Lett. Appl. Microbiol, 35, pp. 296-300 https://doi.org/10.1046/j.1472-765X.2002.01184.x
  11. Jean, D.S., Chang, B.V., Liao, G.S. and Tsou, G.W. and Lee, D.J. (2000) Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment, Water Sci. Technol., 42, pp. 97-102
  12. Kriipsalu, M., Marques, M. and Maastik, A. (2008) Characterization of oily sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications, J. Mater Cycles Waste, 10, pp. 79-86 https://doi.org/10.1007/s10163-007-0188-7
  13. Liu, H. Wang, C. Li, X. Z. Xuan, X. L. Jiang, C. C. and Cui, H. N. (2007) A novel electro-Fenton process for water treatment: Reaction-controlled pH adjustment and performance assessment, Environ. Sci. Technol., 41, pp. 2937-2942 https://doi.org/10.1021/es0622195
  14. Mahmood, T. and Elliott, A. (2006) A review of secondary sludge reduction technologies for the pulp and paper industry, Water Res., 40, pp. 2093-2112 https://doi.org/10.1016/j.watres.2006.04.001
  15. Malik, P. K. and Saha, S. K. (2003) Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst, Sep. Purif. Technol., 31, pp. 241-250 https://doi.org/10.1016/S1383-5866(02)00200-9
  16. Martinez-Huitle, C. A. and E. Brillas (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal B-Environ., 87, pp. 105-145 https://doi.org/10.1016/j.apcatb.2008.09.017
  17. Ohmura, N., Matsumoto, N., Sasaki, K. and Saiki, H. (2002) Electrochemical regeneration of Fe(III) to support growth on anaerobic iron respiration. Appl. Environ. Microb., 68, pp. 405-407 https://doi.org/10.1128/AEM.68.1.405-407.2002
  18. Oturan, M. A. Peiroten, J. Chartrin, P., and Acher, A. J. (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method, Environ. Sci. Technol., 34, pp. 3474-3479 https://doi.org/10.1021/es990901b
  19. Ozcan, A., Sahin, Y., Koparal, A. S. and Oturan, M. A. (2008) Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium, J. Electroanal. Chem., 616, pp. 71-78 https://doi.org/10.1016/j.jelechem.2008.01.002
  20. Pozza, A. Ferrantelli, Da P. Merli, C. and Petrucci, E. (2005) Oxidation efficiency in the electro-Fenton process, J. Appl. Electrochem., 35, pp. 391-398 https://doi.org/10.1007/s10800-005-0801-1
  21. Qiang, Z. M., Chang, J. H., Huang, C. P. (2003) Electrochemical regeneration of Fe2+ in Fenton oxidation processes, Water Res. 37, pp. 1308-1319 https://doi.org/10.1016/S0043-1354(02)00461-X
  22. Tokumura, M., Katoh, H., Katoh, T., Znad, H. T. and Kawase, Y. (2009) Solubilization of excess sludge in activated sludge process using the solar photo-Fenton reaction, J. Hazard. Mater., 162, pp. 1390-1396 https://doi.org/10.1016/j.jhazmat.2008.06.026
  23. Vilve, M., Hirvonen, A. and Sillanpaa, M. (2009) Effects of reaction conditions on nuclear laundry water treatment in Fenton process. J. Hazard. Mater., 164, pp. 1468-1473 https://doi.org/10.1016/j.jhazmat.2008.09.058
  24. Vlyssides, A.G. and Karlis, P.K. (2004) Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion, Bioresource Technol., 91, pp. 201-206 https://doi.org/10.1016/S0960-8524(03)00176-7
  25. Zhang, X. W. Fu, J. L. Zhang, Y. and Lei, L. C. (2008) A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in Electro-Fenton system, Sep. Purif. Technol., 64, pp. 116-123 https://doi.org/10.1016/j.seppur.2008.07.020
  26. Zhang, H., Zhang, D. B. and Zhou, J. Y. (2006) Removal of COD from landfill leachate by electro-Fenton method, J. Hazard. Mater., 135, pp. 106-111 https://doi.org/10.1016/j.jhazmat.2005.11.025