원격 플라즈마 화학기상증착법에 의해 중합된 아크릴산 필름의 XPS 분석

XPS Analysis of Acrylic Acid Films Polymerized by Remote Plasma-Enhanced Chemical Vapor Deposition

  • 김성훈 (청주대학교 응용과학부) ;
  • 서문규 (충남대학교 화학공학과)
  • Kim, Seonghoon (Division of Applied Science, Cheongju University) ;
  • Seomoon, Kyu (Department of Chemical Engineering, Chungnam National University)
  • 투고 : 2009.07.04
  • 심사 : 2009.08.25
  • 발행 : 2009.10.10

초록

플라즈마 중합 아크릴산 필름을 원격 플라즈마 방식으로 Si과 KBr 기판 위에 증착하였다. 플라즈마 출력, 반응 압력, 간접 플라즈마 방식이 필름의 성장속도, 화학적 구조 및 화학 결합 상태 등에 미치는 영향을 조사하였다. 화학 구조와 화학적 상태는 FT-IR, XPS 분석과 curve fitting 기법으로 분석하였다. 플라즈마 출력에 따른 필름의 성장속도는 100 W에서 포화값을 보이지만, 압력에 대해서는 300 mtorr에서 최대값을 나타내었다. 플라즈마 출력을 높이거나 압력을 낮추면 단위 입자들에게 가해지는 에너지 값(W/FM)이 증가하여 아크릴산 분자의 파괴가 촉진되었다. XPS curve fitting 분석 결과, W/FM값이 커질수록 카르복실 COO 결합은 감소하지만 에테르 C-O 결합과 카보닐 C=O 결합은 증가하여 서로 반대의 경향을 보임을 확인하였다.

Plasma-polymerized acrylic acid films were deposited on Si wafer and KBr pellet by remote plasma-enhanced chemical vapor deposition (PECVD). Effects of plasma power, reaction pressure, indirect plasma method on the growth rate, chemical structure, and chemical bonding state of the films were investigated. Chemical structure and chemical state of the films were characterized by Fourier transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis and curve fitting technique. Growth rate of the film increased to a saturation value with plasma power of 100 W, but showed the maximum with reaction pressure at 300 mtorr. Whenever W/FM factor (applied energy per gas molecule) increased by increasing plasma power or lowering pressure, the fragmentation of acrylic acid molecules was promoted. From the XPS curve fitting analyses, we found that the intensity of carboxyl COO bonding peak decreased with W/FM factor, and the tendency of intensity change of carboxylic COO peak was contrary to those of ether C-O and carbonyl C=O peaks.

키워드

참고문헌

  1. C. Vilani, D. E. Weibel, R. R. M. Zamora, A. C. Habert, and C. A. Achete, Appl. Surf. Sci., 254. 131 (2007) https://doi.org/10.1016/j.apsusc.2007.07.060
  2. M. Dhayal, J. Vac. Sci. Technol. A., 24, 1751 (2006) https://doi.org/10.1116/1.2218849
  3. S. N. Hwang, B. J. Jeon, and I. H. Jung, J. Korean Ind. & Eng. Chem., 9, 383 (1998)
  4. B. Gupta, J. G. Hilborn, I. Bisson, and P. Frey, J. Appl. Polym. Sci., 81, 2993 (2001) https://doi.org/10.1002/app.1749
  5. S. Subramanian and S. G. Lee, J. Appl. Polym. Sci., 70, 1001 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981031)70:5<1001::AID-APP21>3.0.CO;2-9
  6. H. X. Sun, L. Zhang, H. Chai, and H. L. Chen, Desalination, 192, 271 (2006) https://doi.org/10.1016/j.desal.2005.07.038
  7. Q. Lv, C. Cao, and H. Zhu, J. Mater. Sci.: Mater. in Med., 15, 607 (2004) https://doi.org/10.1023/B:JMSM.0000026382.34900.b6
  8. F. Rossi, F. Bretagnol, A. Valsesia, and P. Colpo, Eur. Phys. J. Appl. Phys., 43, 277 (2008) https://doi.org/10.1051/epjap:2008077
  9. S. Cho and M. Dhayal, J. Biomed. Nanotechnol., 2, 137 (2006) https://doi.org/10.1166/jbn.2006.025
  10. D. Shi, P. He, J. Lian, L. Wang, and W. J. van Ooij, J. Mater. Res., 17, 2555 (2002) https://doi.org/10.1557/JMR.2002.0371
  11. Y. Yamada, T. Yamada, S. Tasaka, and N. Inagaki, Macromolecules, 29, 4331 (1996) https://doi.org/10.1021/ma951072r
  12. H. Yasuda, Plasma Polymerization, Academic Press, Orlando (1997)
  13. N. Morosoff, B. Crist, M. Bumgarner, T. Hsu, and H. Yasuda, J. Macromol. Sci. Chem., A, 10, 451 (1976) https://doi.org/10.1080/00222337608061192
  14. F. Palumbo, P. Favia, A. Rinaldi. M. Vulpio, and R. d'Agostino, Plasmas Polym., 4, 133 (1999) https://doi.org/10.1023/A:1021896808872
  15. D. L. Cho, P. M. Claesson, C-G. Golander, and K. Johansson, J. Appl. Polym. Sci., 41, 1373 (1990) https://doi.org/10.1002/app.1990.070410702