DOI QR코드

DOI QR Code

Antioxidative Activities of Hydrolysates from Duck Egg White Using Enzymatic Hydrolysis

  • Chen, Yi-Chao (Graduate Institute of Animal Science, National Chung-Hsing University) ;
  • Chang, Hsi-Shan (Graduate Institute of Animal Science, National Chung-Hsing University) ;
  • Wang, Cheng-Taung (Council of Agriculture, Executive Yuan) ;
  • Cheng, Fu-Yuan (Department of Hospitality Management, Toko University)
  • Received : 2009.02.17
  • Accepted : 2009.06.29
  • Published : 2009.11.01

Abstract

Duck egg white (DEW) hydrolysates were prepared by five enzymes (papain, trypsin, chymotrypsin, alcalase, and flavourzyme) and their antioxidant activities investigated in this study. DEW hydrolyzed with papain (DEWHP) had the highest peptide content among the five enzymatic treatments. Besides, the peptide content of DEWHP increased when the enzyme to substrate ratio (E/S ratio) increased. It was suggested that higher E/S ratio contributed to elevate the degree of hydrolysis of DEW effectively. Similar results were also obtained by Tricine-SDS-PAGE. In addition, SDS-PAGE patterns indicated papain was the only one amongst all enzymes with the ability to hydrolyze DEW. In antioxidant properties, DEWHP showed more than 70% of inhibitory activity on linoleic acid peroxidation and superoxide anion scavenging. Moreover, the $Fe^{2+}$ chelating effect of DEWHP was greater than 90%, while no significant difference was observed in DPPH radical scavenging and reducing ability. The results of peptide contents, antioxidant activities and electrophoresis suggested that the higher the peptide content, the stronger the antioxidant activities in DEWHP.

Keywords

References

  1. Adler-Nissen, J. 1985. Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishing. New York. pp. 95-97
  2. Carlsen, C. U., K. T. Rasmussen, K. K. Kjeldsen, P. Westergaard and L. H. Skibsted. 2003. Pro- and antioxidative activity of protein fractions from pork (longissimus dorsi). Eur. Food Res. Technol. 217:195-200 https://doi.org/10.1007/s00217-003-0733-0
  3. Chen, H. M., K. Muramoto and F. Yamauchi. 1995. Structural analysis of antioxidative peptide isolated from soybean $\beta$-conglycinin. J. Agric. Food Chem. 43:574-578 https://doi.org/10.1021/jf00051a004
  4. Chen, H. M., K. Muramoto, F. Yamauchi and K. Nokihara. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44:2619-2623 https://doi.org/10.1021/jf950833m
  5. Cheng, F. Y., Y. T. Liu, T. C. Wan, L. C. Lin and R. Sakata. 2008. The development of angiotensin I converting enzyme inhibitor derived from chicken bone protein. Anim. Sci. J. 79:121-127
  6. Desert, C., C. Guerin-Dubiard, F. Nau, G. Jan, F. Val and J. Mallard. 2001. Comparison of electrophoretic separation of hen egg white protein. J. Agric. Food Chem. 49:4553-4561 https://doi.org/10.1021/jf001423n
  7. Dinis, T. C. P., V. M. C. Madeira and L. M. Almeida. 1994. Action of phenolic derivates (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315:161-169 https://doi.org/10.1006/abbi.1994.1485
  8. Duh, P. D. and G. C. Yen. 1997. Antioxidative activity of three herbal water extracts. Food Chem. 60:639-645 https://doi.org/10.1016/S0308-8146(97)00049-6
  9. Friedman. 1996. Nutritional value of proteins from different food sources. A review. J. Agric. Food Chem. 44:6-29 https://doi.org/10.1021/jf9400167
  10. Guo, Y., D. Pan and M. Tanokura. 2009. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem. 114: 328-333 https://doi.org/10.1016/j.foodchem.2008.09.041
  11. Halliwell, B. and J. M. Gutteridge. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Meth. Enzymol. 186:1-85 https://doi.org/10.1016/0076-6879(90)86093-B
  12. Halliwell, B. 1994. Free radicals and antioxidants: a personal view. Nutr. Rev. 52:253-565 https://doi.org/10.1111/j.1753-4887.1994.tb01453.x
  13. Je, J. Y., Z. J. Qian, H. G. Byun and S. K. Kim. 2007. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 42:840-846 https://doi.org/10.1016/j.procbio.2007.02.006
  14. Kato, A., K. Minaki and K. Kobayashi. 1993. Improvement of emulsifying properties of egg white proteins by attachment of polysaccharide through Maillard reaction in a dry state. J. Agric. Food Chem. 41:540-543 https://doi.org/10.1021/jf00028a006
  15. Kehrer, J. P. 1993. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 23:21-48 https://doi.org/10.3109/10408449309104073
  16. Korhonen, H. and A. Pihlanto. 2003. Food-derived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9:1297-1308 https://doi.org/10.2174/1381612033454892
  17. Lee, H. K., Y. M. Choi, D. O. Noh and H. J. Suh. 2005. Antioxidant effect of Korean traditional lotus liquor. Int. J. Food Sci. Technol. 40:709-715 https://doi.org/10.1111/j.1365-2621.2005.00990.x
  18. Lee, M. H., T. F. Tasi, N. W. Su, C. H. Yeh and H. F. Yao. 1999. Studies on the preparation of chicken egg white hydrolysates and their properties. Food Sci. (Chinese) 26(5):468-477
  19. Lee, W. C. and T. C. Chen. 2002. Functional characteristics of egg white solids obtained from papain treated albumen. J. Food Eng. 51:263-266 https://doi.org/10.1016/S0260-8774(01)00066-8
  20. Lin, M. Y. and C. L. Yen. 1999. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47:1460-1466 https://doi.org/10.1021/jf981149l
  21. Lin, L. C. and W. T. Chen. 2004. The study of antioxidant effects in melanins extracted from various tissues of animals. Asian-Asut. J. Anim. Sci. 18(2):277-281
  22. Liu, J. R., Y. Y. Lin, M. J. Chen, L. J. Chen and C. W. Lin. 2005. Antioxidative activities of kefir. Asian-Aust. J. Anim. Sci. 18:567-573
  23. Mine, Y. 1995. Recent advances in the understanding of egg white protein functionality. Trends in Food Sci. Technol. 6:225-232 https://doi.org/10.1016/S0924-2244(00)89083-4
  24. Mitsuda, H., K. Yasumodo and K. Iwami. 1966. Antioxidative action on of indole compounds during the autoxidation of linoleic acid. Eiyoto Shokuryo 19:210-214 https://doi.org/10.1016/S0308-8146(03)00035-9
  25. Nelson, K. J. and N. N. Potter. 1979. Iron binding by wheat gluten, soy isolate, zein, albumen and casein. J. Food Sci. 44:104-107 https://doi.org/10.1111/j.1365-2621.1979.tb10017.x
  26. Nielsen, P. M., D. Petersen and C. Dambmann. 2001. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66:642-646 https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
  27. Oyaizu, M. 1986. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44:307-315 https://doi.org/10.1590/S1516-89132005000600011
  28. Pihlanto, A. 2006. Antioxidative peptides derived from milk proteins. Int. Dairy J. 16:1036-1314
  29. Pedroche, J., M. M. Yust, H. Lqari, C. Megias, J. Giron-Calle, M. Alaiz, J. Vioque and F. Millan. 2007. Obtaining of Brassica carinata protein hydrolysates enriched in bioactive peptides using immobilized digestive proteases. Food Res. Intern. 40:931-938 https://doi.org/10.1016/j.foodres.2007.04.001
  30. Powrie, W. D. and S. Nakai. 1985. Characteristics of edible fluids of animal origin: Egg. In: Food chemistry. (Ed. O. R. Fennema). pp. 833-837
  31. Raikos, V., L. Campbell and S. R. Euston. 2007. Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Res. Intern. 40:347-355 https://doi.org/10.1016/j.foodres.2006.10.008
  32. Robak, J. and I. R. Gryglewski. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37:837-841 https://doi.org/10.1016/0006-2952(88)90169-4
  33. Sakanaka, S., Y. Tachibana, N. Ishihara and L. R. Juneja. 2004. Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system. Food Chem. 86:99-103 https://doi.org/10.1016/j.foodchem.2003.08.014
  34. Sch$\ddot{a}$gger, H. and G. Von Jagow. 1987. Tricine-sodium dodedyl sulfate- polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  35. Shimada, K., K. Fujilawa, K. Yahara and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945-948 https://doi.org/10.1021/jf00018a005
  36. Statistical Ananlysis System Institute. 1998. SAS user's guide: Statistics. SAS Institute Inc., Cary, NC
  37. Wang, Y. C., R. C. Yu and C. C. Chou. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 23:128-135 https://doi.org/10.1016/j.fm.2005.01.020
  38. Watanabe, K., T. Matsuda and Y. Sato. 1981. The secondary structure of ovomucoid and its domains as studied by circular dichroism. Biochimica et Biophysica Acta (BBA) 667:242-250 https://doi.org/10.1016/0005-2795(81)90189-6
  39. Wu, H. C., H. M. Chen and C. Y. Shiau. 2003. Free amino acid and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Intern. 36: 949-957 https://doi.org/10.1016/S0963-9969(03)00104-2
  40. Yen, G. C., P. D. Duh and C. Y. Chuang. 2000. Antioxidant activity of anthraquinones and anthrone. Food Chem. 70:437-441 https://doi.org/10.1016/S0308-8146(00)00108-4

Cited by

  1. Changes in Antioxidant Activity of Duck Egg after Pressurized Soaking in Green Tea Extract vol.40, pp.9, 2011, https://doi.org/10.3746/jkfn.2011.40.9.1328
  2. A Two-Step, One-Pot Enzymatic Method for Preparation of Duck Egg White Protein Hydrolysates with High Antioxidant Activity vol.172, pp.3, 2014, https://doi.org/10.1007/s12010-013-0578-3
  3. and its hepatoprotective effect against N-nitrosodimethylamine-induced oxidative stress in rats vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2016.1270974
  4. Plant proteases for bioactive peptides release: A review pp.1549-7852, 2017, https://doi.org/10.1080/10408398.2017.1308312
  5. Identification of Novel Cytotoxic Peptide KENPVLSLVNGMF from Marine Sponge Xestospongia testudinaria, with Characterization of Stability in Human Serum pp.1573-3904, 2018, https://doi.org/10.1007/s10989-017-9604-6
  6. 软珊瑚Sarcophyton glaucum 中新型细胞毒性寡 肽的纯化与鉴定 vol.20, pp.1, 2019, https://doi.org/10.1631/jzus.B1700586
  7. Duck egg albumen: physicochemical and functional properties as affected by storage and processing vol.56, pp.3, 2019, https://doi.org/10.1007/s13197-019-03669-x
  8. Effects of alkaline hydrolysis and storage conditions on the biological activity of ostrich egg white vol.43, pp.4, 2009, https://doi.org/10.1111/jfpp.13921
  9. Assessment of different proteases on degree of hydrolysis, functional properties and radical scavenging activities of salted duck egg white hydrolysate vol.56, pp.6, 2009, https://doi.org/10.1007/s13197-019-03645-5
  10. Synthesis, characterization, antioxidant properties and DFT calculation of some new pyrimidine derivatives vol.194, pp.8, 2009, https://doi.org/10.1080/10426507.2018.1550489
  11. Purification and characterization of immunomodulatory peptides from enzymatic hydrolysates of duck egg ovalbumin vol.12, pp.2, 2009, https://doi.org/10.1039/d0fo02674c
  12. Reinforced pickering emulsions stabilized by desalted duck egg white nanogels with Ca2+ as binding agents vol.121, pp.None, 2009, https://doi.org/10.1016/j.foodhyd.2021.106974
  13. Protein hydrolysate from duck egg white by Flavourzyme® digestion: Process optimisation by model design approach and evaluation of antioxidant capacity and characteristic properties vol.156, pp.None, 2009, https://doi.org/10.1016/j.lwt.2021.113018