Synthesis and X-ray Structure Analysis of (Z)-1-(4-Bromophenyl)-1-phenyl-2-(4-tert-butylphenyl)ethene

(Z)-1-(4-브로모페닐)-1-페닐-2-(4-tert-부틸페닐)에텐의 합성 및 X-선 구조분석

  • Kim, Chul-Bae (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Cho, Hyun-Jong (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Sung-Kyung (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Kwangyong (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • 김철배 (중앙대학교 화학신소재공학부) ;
  • 조현종 (중앙대학교 화학신소재공학부) ;
  • 이성경 (중앙대학교 화학신소재공학부) ;
  • 박광용 (중앙대학교 화학신소재공학부)
  • Received : 2009.04.01
  • Accepted : 2009.04.27
  • Published : 2009.06.10

Abstract

As important intermediates for blue emitting materials of organic light-emitting diodes, bromotriphenylethylene derivatives for distrylarylenes are prepared by reactions of bromobenzophenone with benzylphosphonates. The reaction produces a 60 : 40 mixture of (Z)- and (E)-geometric isomers that are difficult to be resolved. The (Z)-isomer is successfully isolated by a selective recrystallization process using 2-propanol as a solvent. The X-ray structure analysis of (Z)-isomer shows that dihedral angles between tert-butylphenyl ring and bromophenyl ring and between bromophenyl ring and phenyl ring are $56.5(4)^{\circ}$ and $74.1(4)^{\circ}$, respectively.

유기발광다이오드의 청색 발광 물질로 많은 관심을 받고 있는 디스티릴아릴렌 화합물들의 합성 과정에서 핵심적인 중간체인 브로모트리페닐에틸렌 화합물들은 브로모벤조페논과 벤질포스포네이트의 반응을 통하여 얻어진다. 이 반응은 분리하기 어려운 (Z)-와 (E)-기하이성질체가 60 : 40의 비율로 생성한다. 본 연구에서는 2-프로탄올을 이용한 재결정법을 통하여 (Z)-이성질체를 간단하게 분리하였다. X-ray를 이용하여 (Z)-이성질체의 결정 구조를 살펴본 결과, tert-부틸페닐 고리와 브로모페닐 고리 간의 dihedral angle은 $56.5(4)^{\circ}$이며 브로모페닐 고리와 페닐 고리 간의 dihedral angle은 $74.1(4)^{\circ}$였다.

Keywords

Acknowledgement

Supported by : 중앙대학교

References

  1. Y.-X. Li, X.-T. Tao, F.-J. Wang, T. He, L.-L. Zhang, and M.-H. Jiang, Chem. Phys. Lett., 470, 264 (2009) https://doi.org/10.1016/j.cplett.2009.01.057
  2. P.-I Shih and C.-F. Shua, Appl. Phys. Lett., 88, 251110 (2006) https://doi.org/10.1063/1.2214141
  3. H.-J. Su, F.-I. Wu, Y.-H. Tseng, and C.-F. Shu, Adv. Funct. Mater., 15, 1209 (2005) https://doi.org/10.1002/adfm.200400269
  4. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67, 3853 (1995) https://doi.org/10.1063/1.115295
  5. S.-W. Wen, M.-T. Lee, and C. H. Chen, IEEE J. Display Tech., 1. 90 (2005) https://doi.org/10.1109/JDT.2005.852802
  6. L. S. Hung and C. H. Chen, Mater. Sci. Eng. R-Rev. J., 39, 143 (2002) https://doi.org/10.1016/S0927-796X(02)00093-1
  7. R. T. Williams, P. Hodge, and S. Yeates, React. Funct. Polym., 67, 1061 (2007) https://doi.org/10.1016/j.reactfunctpolym.2007.06.006
  8. R. T. Williams, P. Hodge, and S. Yeates, Polym. Adv. Technol., 19, 569 (2008) https://doi.org/10.1002/pat.1108
  9. T. Sakanoue, M. Yahiro, C. Adachi, J. H. Burroughes, Y. Oku, N. Shimoji, T. Takahashi, and A. Toshimitsu, Appl. Phys. Lett., 92, 053505 (2008) https://doi.org/10.1063/1.2839895
  10. T. Sakanoue, M. Yahiro, C. Adachi, H. Uchiuzou, T. Takahashi, and A. Toshimitsu, Appl. Phys. Lett., 90, 171118 (2007) https://doi.org/10.1063/1.2734389
  11. W. W. Wadsworth and W. D. Emmons, J. Am. Chem. Soc., 83, 1733 (1961) https://doi.org/10.1021/ja01468a042
  12. Y. Chen and S.-P. Lai, J. Polym. Sci. A Polym. Chem., 39, 2571 (2001) https://doi.org/10.1002/pola.1234
  13. C. Cho and K. Park, Bull. Korean. Chem. Soc., 28, 1159 (2007) https://doi.org/10.5012/bkcs.2007.28.7.1159
  14. C. Schmidt, N. H. Chishti, and T. Breining, Synthesis, 391 (1982)
  15. Bruker. SMART and SAINT. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA
  16. L. J. Farrugia, J. Appl. Cryst., 30, 565 (1997)
  17. L. Gao, H. Peng, and H.-W. He, Acta. Cryst. E62, o5032 (2008)
  18. K. Ogawa, T. Sabo, S. Yoshimura, Y. Takeuchi, and K. Toriumio, J. Am. Chem. Soc., 114, 1041 (1992) https://doi.org/10.1021/ja00029a037
  19. C.-B. Kim, C.-H. Cho, K. Y. Chai, and K. Park, Acta. Cryst., E64, o457 (2008) https://doi.org/10.1107/S1600536808000998