DOI QR코드

DOI QR Code

Successful Application of the Dual-Vector System II in Creating a Reliable Phage-Displayed Combinatorial Fab Library

  • Song, Suk-yoon (Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Hur, Byung-ung (Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Lee, Kyung-woo (IG Therapy Co., Kangwon National University) ;
  • Choi, Hyo-jung (Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Sung-soo (Department of Pharmacology, School of Medicine, Kangwon National University) ;
  • Kang, Goo (Department of Pathology, School of Medicine, Kangwon National University) ;
  • Cha, Sang-hoon (Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University)
  • Received : 2008.09.30
  • Accepted : 2008.12.29
  • Published : 2009.03.31

Abstract

The dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a $1.3{\times}10^7$ combinatorial antibody complexity, against fluorescein-BSA resulted in successful isolation of human Fab clones specific for the antigen despite the presence of only a single light chain in the library. By using the unique feature of the DVS-II, an antibody library of a larger size, named DVFAB-131L, which has a $1.5{\times}10^9$ combinatorial antibody complexity, was also generated in a rapid manner by combining $1.3{\times}10^7$ heavy chains and 131 light chains and more diverse anti-fluorescein-BSA Fab antibody clones were successfully obtained. Our results demonstrate that the DVS-II can be applied readily in creating phage-displayed antibody libraries with much less effort, and target-specific antibody clones can be isolated reliably via light chain promiscuity of antibody molecules.

Keywords

Acknowledgement

Supported by : Small and Medium Business Administration, Kangwon National University

References

  1. Arakawa, M., Yamashiro, T., Uechi, G., Tadano, M., and Nishizono, A. (2007). Construction of human Fab (gamma1/kappa) library and identification of human monoclonal Fab possessing neutralizing potency against Japanese encephalitis virus. Microbiol. Immunol. 51, 617-625
  2. Biard-Piechaczyk, M., Teulon, I., Peraldi-Roux, S., Del Rio, M., Pau, B., and Embleton, J. (1999). Human single-chain Fv fragments from a combinatorial library using the loxP-Cre recombination system. Hum. Antibodies. 9, 67-77 https://doi.org/10.3233/HAB-1999-9108
  3. Cen, X., Bi, Q., and Zhu, S. (2006). Construction of a large phage display antibody library by in vitro package and áå=îáîç recombination. Appl. Microbiol. Biotechnol. 71, 767-772 https://doi.org/10.1007/s00253-006-0334-5
  4. Chapman, C.J., Mockridge, C.I., Spellerberg, M.B., Zhu, D., and Stevenson, F.K. (1997). Phage surface expression for analysis of recognition sites of human autoantibodies: comparison of single chain Fv and Fab. Hum. Antibodies 8, 124-128 https://doi.org/10.3233/HAB-1997-8303
  5. Collet, T.A., Roben, P., O'Kennedy, R., Barbas, C.F.3rd, Burton, D.R., and Lerner, R.A. (1992). A binary plasmid system for shuffling combinatorial antibody libraries. Proc. Natl. Acad. Sci. USA 89, 10026-10030 https://doi.org/10.1073/pnas.89.21.10026
  6. Czerwinski, M., Siemaszko, D., Siegel, D.L., and Spitalnik, S.L. (1998). Only selected light chains combine with a given heavy chain to confer specificity for a model glycopeptide antigen. J. Immunol. 160, 4406-4417
  7. Dower, W.J., Miller, J.F., and Ragsdale, C.W. (1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127-6145 https://doi.org/10.1093/nar/16.13.6127
  8. Gavilondo, J.V., and Larrick, J.W. (2000). Antibody engineering at the millennium. BioTechniques 29, 128-145
  9. Geoffroy, F., Sodoyer, R., and Aujame, L. (1994). A new phage display system to construct multicombinatorial libraries of very large antibody repertoires. Gene 151, 109-113 https://doi.org/10.1016/0378-1119(94)90639-4
  10. Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.A., Waterhouse, P.E., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., et al. (1994). Isolation of high affinity human anti-bodies directly from large synthetic repertoires. EMBO J. 13, 3245-3260
  11. Hoet, R.M., Cohen, E.H., Kent, R.B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., et al. (2005). Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determiningregion diversity. Nat. Biotechnol. 23, 344-348 https://doi.org/10.1038/nbt1067
  12. Hong, S.H., Lee, M.S., Park, S., Kim, H.I., Shin, H.J., Kwon, M.H., and Kim, K.H. (2004). A phagemid system enabling easy estimation of the combinatorial antibody library size. Immunol. Lett. 91, 247-253 https://doi.org/10.1016/j.imlet.2003.12.011
  13. Joo, H.Y., Hur, B.U., Lee, K.W., Song, S.Y., and Cha, S.H. (2008). Establishment of a reliable dual-vector system for the phage display of antibody fragments. J. Immunol. Methods 333, 24-37 https://doi.org/10.1016/j.jim.2007.11.015
  14. Kwon, M.H., Lee, M.S., Hong, S.H., Kim, K.H., Shin, H.J., Park, S., Lee, C.H., and Kim, H.I. (2003). A visible phagemid system for the estimation of Cre-mediated recombination efficiency. J. Immunol. Methods 280, 165-173 https://doi.org/10.1016/S0022-1759(03)00261-8
  15. Lee, C.V., Liang, W.C., Dennis, M.S., Eigenbrot, C., Sidhu, S.S., and Fuh, G. (2004). High-affinity human antibodies from phagedisplayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol. 340, 1073-1093 https://doi.org/10.1016/j.jmb.2004.05.051
  16. Malone, J., and Sullivan, M.A. (1996). Analysis of antibody selection by phage display utilizing anti-phenobarbital antibodies. J. Mol. Recognit. 9, 738-745 https://doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<738::AID-JMR333>3.0.CO;2-V
  17. Marks, J.D., and Bradbury, A. (2004). Selection of human antibodies from phage display libraries. Methods Mol. Biol. 248, 161-176
  18. Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581-589 https://doi.org/10.1016/0022-2836(91)90498-U
  19. McCafferty, J. (1996). Phage display: factors affecting panning efficiency. In Phage Display of Peptides and Proteins: A Laboratory Manual, B.K. Kay, J. Winter, and J. McCafferty, eds. (California, USA: Academic Press), pp. 261-276
  20. Michelsen, B.K. (1995). Transformation of Escherichia coli increases 260-fold upon inactivation of T4 DNA ligase. Anal. Biochem. 225, 172-174 https://doi.org/10.1006/abio.1995.1130
  21. Nissim, A., Hoogenboom, N.R., Tomlinson, I.M., Flynn, G., Midgley, C., Lane, D., and Winter, G. (1994). Antibody fragments from a 'single pot' phage display library as immunological reagents. EMBO J. 13, 692-698
  22. Oh, M.Y., Joo, H.Y., Hur, B.U., Jeong, Y.H., and Cha, S.H. (2007). Enhancing phage display of antibody fragments using gIIIamber suppression. Gene 386, 81-89 https://doi.org/10.1016/j.gene.2006.08.009
  23. Ostermeier, M., and Benkovic, S.J. (2000). A two-phagemid system for the creation of non-phage displayed antibody libraries approaching one trillion members. J. Immunol. Methods 237, 175-186 https://doi.org/10.1016/S0022-1759(99)00245-8
  24. Rojas, G., Almagro, J.C., Acevedo, B., and Gavilondo, J.V. (2002). Phage antibody fragments library combining a single human light chain variable region with immune mouse heavy chain variable regions. J. Biotechnol. 94, 287-298 https://doi.org/10.1016/S0168-1656(01)00432-1
  25. Rothe, C., Urlinger, S., L$\ddot{o}$hning, C., Prassler, J., Stark, Y., Jager, U., Hubner, B., Bardroff, M., Pradel, I., Boss, M., et al. (2008). The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J. Mol. Biol. PTS, 1182-1200 https://doi.org/10.1016/j.jmb.2007.12.018
  26. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: A laboratory manual, 2nd ed., (New York, USA: Cold Spring Harbor Laboratory Press)
  27. Sblattero, D., and Bradbury, A. (2000). Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotechnol. 18, 75-80 https://doi.org/10.1038/71958
  28. Sidhu, S.S., Li, B, Chen, Y., Fellouse, F.A., Eigenbrot, C., and Fuh, G. (2004). Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J. Mol. Biol. 338, 299-310 https://doi.org/10.1016/j.jmb.2004.02.050
  29. Smith, G.P. (1988). Filamentous phages as cloning vectors. Biotechnology. 10, 61-83
  30. Song, S., Zhang, T., Qi, W., Zhao, W., Xu, B., and Liu, J. (1993). Transformation of Escherichia coli with foreign DNA by electroporation. Chin. J. Biotechnol. 9, 197-201
  31. Tsurushita, N., Fu, H., and Warren, C. (1996). Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries. Gene 172, 59-63 https://doi.org/10.1016/0378-1119(96)00170-9
  32. Waterhouse, P., Griffiths, A.D., Johnson, K.S., and Winter, G. (1993). Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Res. 21, 2265-2266 https://doi.org/10.1093/nar/21.9.2265
  33. Zahra, D.G., Vancov, T., Dunn, J.M., Hawkins, N.J., and Ward, R.L. (1999). Selectable in-vivo recombination to increase antibody library size--an improved phage display vector system. Gene 227, 49-54 https://doi.org/10.1016/S0378-1119(98)00593-9

Cited by

  1. Development of the dual-vector system-III (DVS-III), which facilitates affinity maturation of a Fab antibody via light chain shuffling vol.132, pp.1, 2010, https://doi.org/10.1016/j.imlet.2010.05.002
  2. Substitution of Heavy Complementarity Determining Region 3 (CDR-H3) Residues Can Synergistically Enhance Functional Activity of Antibody and Its Binding Affinity to HER2 Antigen vol.39, pp.3, 2009, https://doi.org/10.14348/molcells.2016.2235