DOI QR코드

DOI QR Code

Catch up growth in children born small for gestational age by corrected growth curve

부당 경량아로 출생한 소아들에서 교정성장곡선을 이용한 따라잡기 성장에 대한 연구

  • Jung, Myung Ki (Department of Pediatrics, College of Medicine, Hallym University) ;
  • Song, Ji Eun (Department of Pediatrics, College of Medicine, Hallym University) ;
  • Yang, Seung (Department of Pediatrics, College of Medicine, Hallym University) ;
  • Hwang, Il Tae (Department of Pediatrics, College of Medicine, Hallym University) ;
  • Lee, Hae Ran (Department of Pediatrics, College of Medicine, Hallym University)
  • 정명기 (한림대학교 의과대학 소아과학교실) ;
  • 송지은 (한림대학교 의과대학 소아과학교실) ;
  • 양승 (한림대학교 의과대학 소아과학교실) ;
  • 황일태 (한림대학교 의과대학 소아과학교실) ;
  • 이혜란 (한림대학교 의과대학 소아과학교실)
  • Received : 2009.04.08
  • Accepted : 2009.08.14
  • Published : 2009.09.15

Abstract

Purpose : Being small for gestational age (SGA) is a risk factor of short stature in children. Genetic background such as mid-parental height (MPH) is known to influence growth of children born SGA. We studied the relationship between growth of children born SGA and MPH and studied the effects of insulin-like growth factor (IGF-I) and insulin-like growth factor binding protein 3 (IGFBP-3) on postnatal growth in children born SGA according to MPH. Methods : Forty-nine neonates born SGA were included in this study. We defined corrected height standard deviation score (cHtSDS) by modified height SDS (HtSDS) based on their MPH. We categorized subjects into group 1 consisting of children with cHtSDS ${\geq}0$ (n=35) and group 2 consisting of children with cHtSDS <0 (n=14), and compared IGF-I and IGFBP-3 between the two groups. Results : The HtSDSs and cHtSDSs in groups 1 and 2 were $0.06{\pm}1.05$ vs. $-0.95{\pm}0.85$ (P=0.000) and $0.78{\pm}0.93$ vs. $-0.46{\pm}0.67$ (P=0.000), respectively. IGF-I SDS was higher in group 1 than in group 2 ($2.82{\pm}3.69$ vs. $0.23{\pm}2.42$, P=0.012). Total cHtSDS ($0.42{\pm}1.03$) was significantly higher than HtSDS ($-0.22{\pm}1.10$) (P=0.000). Conclusion : Our results show that cHtSDS differs significantly from HtSDS. Growth assessment by standardized growth curve does not uniformly show effects of genetic factors. A more accurate assessment of growth uses a personalized corrected growth curve that considers the genetic factor measured by MPH.

목 적 : 부당경량아는 소아기 저신장의 주요한 이유 중의 하나이다. 유전적 요소는 부당경량아의 성장에 중요한 영향을 끼친다고 알려져 있다. 일반 소아와 유전적 요소사이의 관계에 대한 몇몇 보고가 있다. 하지만 부당경량아와 유전적 요소사이의 관계에 대한 보고는 많지 않다. 그래서 본 논문에서는 부당경량아의 성장과 부모중간키의 측정에 의한 유전적 요소 사이의 관계에 대해 연구하였다. 그리고 IGF-I, IGFBP-3 그리고 유전적 요소가 반영된 출생 후 성장과의 관계에 대해 연구하였다. 방 법 : 1989년부터 2002년까지 한림의대 강동성심병원에서 태어난 신생아로 출생체중이 10백분위수 미만인 부당 경량아 300명 중 추적 관찰이 가능했던 49명을 대상으로 하였다. 대상아의 부모중간키를 최종 평균값으로 하는 새로운 개인별 교정성장곡선을 구해 해당 연령의 표준편차를 적용하여 cHtSDS를 계산하였다. cHtSDS${\geq}0$ (n=35)인 1군, cHtSDS<0 (n=14)인 2군으로 나누고 두 군 간에 IGF-I과 IGFBP-3를 비교하였다. 결 과 : 1군과 2군의 HtSDS와 cHtSDS는 $0.28{\pm}1.05$, $-0.95{\pm}0.85$ (P=0.000), $0.78{\pm}0.93$, $-0.46{\pm}0.67$ (P=0.000)이었다. 또한 IGF-I SDS는 각각 $2.82{\pm}3.69$, $0.23{\pm}2.42$로 1군이 2군에 비하여 유의하게 더 높았다(P=0.012). 전체 cHtSDS ($0.42{\pm}1.03$)는 HtSDS ($-0.22{\pm}1.10$)보다 더 높았고(P=0.000), cHtSDS는 IGF-I SDS와 유의한 양의 상관관계를 가졌다(P=0.016). 결 론 : 본 연구 결과로 볼 때 cHtSDS는 HtSDS와 유의하게 차이가 났다. 현재의 일률적인 표준성장곡선에 의한 성장평가는 유전적 요소를 제대로 반영하지 못할 수 있다. 진정한 성장상태의 평가는 부모중간키 같은 유전적 요소를 반영한 개인별 교정성장곡선의 사용에 의해 가능할 것이다. 비록 cHtSDS를 계산하는 방법론상의 문제가 아직 있지만, cHtSDS는 부당경량아의 성장평가에 유용한 방법이 될 수 있다.

Keywords

References

  1. Karlberg J, Albertsson-Wikland K. Growth in full-term small- for-gestational-age infants: from birth to final height. Pediatr Res 1995;38:733-9
  2. Hokken-Koelega AC, De Ridder MA, Lemmen RJ, Den Hartog H, De Muinck Keizer-Schrama SM, Drop SL. Children born small for gestational age: do they catch up? Pediatr Res 1995;38:267-71 https://doi.org/10.1203/00006450-199508000-00022
  3. Pollack RN, Divon MY. Intrauterine growth retardation: definition, classification, and etiology. Clin Obstet Gynecol 1992;35:99-107 https://doi.org/10.1097/00003081-199203000-00015
  4. Wollmann HA. Intrauterine growth restriction: definition and etiology. Horm Res 1998;49 Suppl 2:1-6 https://doi.org/10.1159/000053079
  5. Lee PA, Chernausek SD, Hokken-Koelega AC, Czernichow P; International Small for Gestational Age Advisory Board. International Small for Gestational Age Advisory Board consensus development conference statement: management of short children born small for gestational age, April 24- October 1, 2001. Pediatrics 2003;111:1253-61 https://doi.org/10.1542/peds.111.6.1253
  6. Kramer MS. Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Organ 1987;65:663-737
  7. Luo ZC, Albertsson-Wikland K, Karlberg J. Length and body mass index at birth and target height influences on patterns of postnatal growth in children born small for gestational age. Pediatrics 1998;102:E72 https://doi.org/10.1542/peds.102.6.e72
  8. Smith DW, Truog W, Rogers JE, Greitzer LZ, Skinner AI, McCann JJ, et al. Shifting linear growth during infancy: illustration of genetic factors in growth from fetal life through infancy. J Pediatr 1976;89:225-30 https://doi.org/10.1016/S0022-3476(76)80453-2
  9. V\ddot{o}lkl TM, Haas B, Beier C, Simm D, Dörr HG. Catch-down growth during infancy of children born small (SGA) or appropriate (AGA) for gestational age with short-statured parents. J Pediatr 2006;148:747-52 https://doi.org/10.1016/j.jpeds.2006.01.034
  10. Sorva R, Tolppanen EM, Lankinen S, Perheentupa J. Growth evaluation: parent and child specific height standards. Arch Dis Child 1989;64:1483-7 https://doi.org/10.1136/adc.64.10.1483
  11. Tanner JM. Use and abuse of growth standards. In: Falkner F, Tanner JM, editors. Human growth. 2nd ed. New York: Plenum Press, 1986;95-109
  12. Tanner JM, Goldstein H, Whitehouse RH. Standards for children's height at ages 2-9 years allowing for heights of parents. Arch Dis Child 1970;45:755-62 https://doi.org/10.1136/adc.45.244.755
  13. Tanner JM, Goldstein H, Whitehouse RH. Standards for children's height at ages 2-9 years allowing for heights of parents. Arch Dis Child 1970;45:755-62 https://doi.org/10.1136/adc.45.244.755
  14. Karlberg J, Albertsson-Wikland K, Kwan CW, Chan FY. Early spontaneous catch-up growth. J Pediatr Endocrinol Metab 2002;15 Suppl 5:1243-55
  15. Toumba M, Hadjidemetriou A, Topouzi M, Savva SC, Demetriadou R, Kanaris C, et al. Evaluation of the auxological and metabolic status in prepubertal children born small for gestational age. J Pediatr Endocrinol Metab 2005;18:677-88
  16. D'Ercole AJ. The insulin-like growth factors and in utero growth. Growth Genet Horm 1992;8:1-5
  17. Bang P, Giudice LC, Rosenfeld RG. Insulin-like growth factors and IGF binding proteins as endocrine growth factors in the human fetus and neonate. In: Frontiers in endocrinology. Geneva: Ayers-Serono Symposia 1994;6:197-212
  18. Cohen P, Rosenfeld RG. Growth Regulation. In: Griffin JE, Ojeda SR, editors. Textbook of endocrine physiology. 3rd ed. New York: Oxford University Press, 1996;244-59
  19. Randhawa R, Cohen P. The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metab 2005;86: 84-90 https://doi.org/10.1016/j.ymgme.2005.07.028
  20. Le Roith D. The insulin-like growth factor system. Exp Diabesity Res 2003;4:205-12 https://doi.org/10.1155/EDR.2003.205
  21. Hardouin S, Gourmelen M, Noguiez P, Seurin D, Roghani M, Le Bouc Y, et al. Molecular forms of serum insulin-like growth factor (IGF)-binding proteins in man: relationships with growth hormone and IGFs and physiological significance. J Clin Endocrinol Metab 1989;69:1291-301 https://doi.org/10.1210/jcem-69-6-1291
  22. Binoux M, Hossenlopp P. Insulin-like growth factor (IGF) and IGF-binding proteins: comparison of human serum and lymph. J Clin Endocrinol Metab 1988;67:509-14 https://doi.org/10.1210/jcem-67-3-509
  23. Garcia H, Henriquez C, Ugarte F, Fernandez E, Beas F, Iniguez G, et al. GH-IGF axis during catch up growth in small for gestational age (SGA) infants. J Pediatr Endocrinol Metab 1996;9:561-7
  24. Hwang IT, Park EA, Kim GH, Kim HS. Serum IGF-I, free IGF-I, IGFBP-1, IGFBP-3 levels in children with intrauterine growth retardation. J Korean Soc Pediatr Endocrinol 1999;4: 186-94
  25. Thieriot-Prevost G, Boccara JF, Francoual C, Badoual J, Job JC. Serum insulin-like growth factor 1 and serum growth- promoting activity during the first postnatal year in infants with intrauterine growth retardation. Pediatr Res 1988;24: 380-3
  26. Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M. Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res 1991;29:219-25
  27. Gluckman PD. Clinical review 68: The endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. J Clin Endocrinol Metab 1995;80:1047-50 https://doi.org/10.1210/jc.80.4.1047
  28. Giudice LC, de Zegher F, Gargosky SE, Dsupin BA, de las Fuentes L, Crystal RA, et al. Insulin-like growth factors and their binding proteins in the term and preterm human fetus and neonate with normal and extremes of intrauterine growth. J Clin Endocrinol Metab 1995;80:1548-55 https://doi.org/10.1210/jc.80.5.1548
  29. De Waal WJ, Hokken-Koelega AC, Stijnen T, de Muinck Keizer-Schrama SM, Drop SL. Endogenous and stimulated GH secretion, urinary GH excretion, and plasma IGF-I and IGF-II levels in prepubertal children with short stature after intrauterine growth retardation. The Dutch Working Group on Growth Hormone. Clin Endocrinol (Oxf) 1994;41:621- 30 https://doi.org/10.1111/j.1365-2265.1994.tb01828.x
  30. Albertsson-Wikland K, Boguszewski M, Karlberg J. Children born small-for-gestational age: postnatal growth and hormonal status. Horm Res 1998;49:7-13 https://doi.org/10.1159/000053080
  31. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocr Rev 2001;22:53-74 https://doi.org/10.1210/er.22.1.53
  32. Daughaday WH. Growth hormone axis overview--somatomedin hypothesis. Pediatr Nephrol 2000;14:537-40 https://doi.org/10.1007/s004670000334
  33. Wright CM, Cheetham TD. The strengths and limitations of parental heights as a predictor of attained height. Arch Dis Child 1999;81:257-60 https://doi.org/10.1136/adc.81.3.257

Cited by

  1. The Usefulness of Birth Weight Z-Score as a Predictor of Catch Up Growth in Preterm Infants vol.22, pp.3, 2009, https://doi.org/10.5385/nm.2015.22.3.142