References
-
Bradford, M. C. J. and VanNice, M. A., '
$CO_{2}$ Reforming of$CH_{4}$ ,' Catal. Rev.-Sci. Eng. 41, 1(1999) - Hu, Y. H. and Ruckenstein, E., "Binary MgO-based Solid Solution Catalysts for Methane Conversion to Syngas," Catal. Rev.- Sci. Eng. 44, 423(2002) https://doi.org/10.1081/CR-120005742
- Assabumrungrat, S., Laosiripojana, N. and Piroonlerkgul, P., "Determination of the Boundary of Carbon Formation for Dry Reforming of Methane in a Solid Oxide Fuel Cell," J. Power Sources 159, 1274(2006) https://doi.org/10.1016/j.jpowsour.2005.12.010
- Xiancai, L., Shuigen, L., Yifeng, Y., Min, W. and Fei, H., 'Studies on Coke Formation and Coke Species of Nickel-based Catalysts in CO2 Reforming of CH4,' Catal. Lett. 118, 59(2007) https://doi.org/10.1007/s10562-007-9140-7
- Snoeck, J. W., Froment, G. F. and Fowles, M., "Filamentous Carbon Formation and Gasification: Thermodynamics, Driving Force, Nucleation, and Steady-state Growth," J. Catal. 169, 240(1997) https://doi.org/10.1006/jcat.1997.1634
- Trimm, D. L., 'Catalysts for the Control of Coking During Steam Reforming,' Elsevier Science Bv, pp. 3-10(1999) https://doi.org/10.1016/S0920-5861(98)00401-5
-
Rostrupnielsen, J. R. and Hansen, J. H. B., "
$CO_{2}$ Reforming of Methane over Transition Metals," J. Catal. 144, 38(1993) https://doi.org/10.1006/jcat.1993.1312 -
Verykios, X. E., 'Mechanistic Aspects of the Reaction of
$CO_{2}$ Reforming of Methane over Rh/$AI_{2}$ $O_{3}$ Catalyst,' Appl. Catal. A: Gen., 255, 101(2003) https://doi.org/10.1016/S0926-860X(03)00648-3 -
Wisniewski, M., Boreve, A. and Gein, P., "Catalytic
$CO_{2}$ Reforming of Methane over Ir/$Ce_{0.9}$ $Gd_{0.1}$ $O_{2- ," Catal. Commun., 6, 596(2005) https://doi.org/10.1016/j.catcom.2005.05.008$\chi$ }$ -
Qin, D. and Lapszewicz, J., 'Study of Mixed Steam and
$CO_{2}$ Reforming of$CH_{4}$ to Syngas on MgO-supported Metals,' Elsevier Science Bv, 51-560(1994) https://doi.org/10.1016/0920-5861(94)80179-7 -
Tomishige, K., Yamazaki, O., Chen, Y. G., Yokoyama, K., Li, X. H. and Fujimoto, K., 'Development of Ultra-stable Ni Satalysts for
$CO_{2}$ Reforming of Methane,' Elsevier Science Bv, 35-39(1998) https://doi.org/10.1016/S0920-5861(98)00238-7 -
Tsipouriari, V. A. and Verykios, X. E., "Kinetic Study of the Catalytic Reforming of Methane with Carbon Dioxide to Synthesis Gas over Ni/
$ Catalyst," Catal. Today 64, 83(2001) https://doi.org/10.1016/S0920-5861(00)00511-3$La_{2}$ O_{3}$ -
Chen, Y. G., Yamazaki, O., Tomishige, K. and Fujimoto, K., "Noble Metal Promoted
$ Solid Solution Catalysts for the Reforming of CH4 with$Ni_{0.03}$ Mg_{0.97}$$CO_{2}$ ," Catal. Lett. 39, 91(1996) https://doi.org/10.1007/BF00813736 -
Tang, S., Ji, L., Lin, J., Zeng, H. C., Tan, K. L. and Li, K., " CO2 Reforming of Methane to Synthesis Gas over Sol-gel-made Ni/
$\gamma$ $AL_2{O_{3}}$ Catalysts from OrganoMetallic Precursors,"J.Catal. 194, 424(2000) https://doi.org/10.1006/jcat.2000.2957 - Zhang, Z. L. and Verykios, X. E., 'Carbon-dioxide Reforming of Methane to Synthesis Gas over Supported Ni Catalysts,' Elsevier Science Bv, 589-595(1994) https://doi.org/10.1016/0920-5861(94)80183-5
- De Lima, S. M., Pena, M. A., Fierro, J. L. G. and Assaf, J. M., "La1-xCaxNiO3 Perovskite Oxides: Characterization and Catalytic Reactivity in Dry Reforming of Methane," Catal. Lett. 124, 195 (2008) https://doi.org/10.1007/s10562-008-9484-7
-
Gallego, G. S., Mondrag, F., Barrault, J., Tatibou, J.-M. and Batiot- Dupeyrat, C., "
$CO_{2}$ Reforming of$CH_{4}$ over La-Ni Based Perovskite Precursors," Appl. Catal. A: Gen., 311, 164(2006) https://doi.org/10.1016/j.apcata.2006.06.024 -
Goldwasser, M. R., Rivas, M. E., Pietri, E., Peez-Zurita, M. J., Cubeiro, M. L., Gingembre, L., Leclercq, L. and Leclercq, G., "Perovskites as Catalysts Precursors:
$CO_{2}$ Reforming of$CH_{4}$ on$Ln_{1-\chi}Ca_{\chi}Ru_{0.8}Ni_{0.2}$ O3 (Ln=La, Sm, Nd)," Appl. Catal. A: Gen., 255, 45(2003) https://doi.org/10.1016/S0926-860X(03)00643-4 -
Guo, J., Lou, H., Zhu, Y. and Zheng, X., "La-based Perovskite Precursors Preparation and Its Catalytic Activity for
$CO_{2}$ Reforming of$CH_{4}$ ," Mater. Lett. 57, 4450(2003) https://doi.org/10.1016/S0167-577X(03)00341-0 -
Lima, S. M., Assaf, J. M., Pe, M. A. and Fierro, J. L. G., "Structural Features of
$La_{1-\chi}Ce_{\chi}NiO_{3}$ Mixed Oxides and Performance for the Dry Reforming of Methane," Appl. Catal. A: Gen., 311, 94 (2006) https://doi.org/10.1016/j.apcata.2006.06.010 -
Rivas, M. E., Fierro, J. L. G., Goldwasser, M. R., Pietri, E., Perez- Zurita, M. J., Griboval-Constant, A. and Leclercq, G., "Structural Features and Performance of
$LaNi_{1-\chi}Rh_{\chi}O_{3}$ System for the Dry Reforming of Methane," Appl. Catal. A-Gen. 344, 10(2008) https://doi.org/10.1016/j.apcata.2008.03.023 - Rivas, M. E., Fierro, J. L. G., Guil-Lopez, R., Pena, M. A., La Parola, V. and Goldwasser, M. R., 'Preparation and Characterization of Nickel-based Mixed-oxides and Their Performance for Catalytic Methane Decomposition,' Elsevier Science Bv, 367-373(2008) https://doi.org/10.1016/j.cattod.2007.12.045
-
Valderrama, G., Kiennemann, A. and Goldwasser, M. R., 'Dry Reforming of CH4 over Solid Solutions of
$LaNi_{1-\chi}Co_{\chi}O_{3}$ ,' Catal. Today 133-135, 142(2008) https://doi.org/10.1016/j.cattod.2007.12.069 -
Crisafulli, C., Scire, S., Maggiore, R., MiNico, S. and Galvagno, S., "
$CO_2$ Reforming of Methane over Ni-Ru and Ni-Pd Bimetallic Catalysts," Catal. Lett. 59, 21(1999) https://doi.org/10.1023/A:1019031412713 - Crisafulli, C., Scire, S., MiNico, S. and Solarino, L., 'Ni-Ru Bimetallic Catalysts for the CO2 Reforming of Methane,' Appl. Catal. A: Gen., 225, 1(2002) https://doi.org/10.1016/S0926-860X(01)00585-3
-
Zhang, J., Wang, H. and Dalai, A. K., 'Effects of Metal Content on Activity and Stability of Ni-Co Bimetallic Catalysts for
$CO_2$ Reforming of CH4,' Appl. Catal. A: Gen., 339, 121(2008) https://doi.org/10.1016/j.apcata.2008.01.027 - Laosiripojana, N. and Assabumrungrat, S., "Catalytic Dry Reforming of Methane over High Surface Area Ceria," Appl. Catal. B: Environ., 60, 107(2005) https://doi.org/10.1016/j.apcatb.2005.03.001
- Wang, J. B., Hsiao, S.-Z. and Huang, T.-J., "Study of Carbon Dioxide Reforming of Methane over Ni/Yttria-doped Ceria and Effect of Thermal Treatments of Support on the Activity Behaviors," Appl. Catal. A: Gen., 246, 197(2003) https://doi.org/10.1016/S0926-860X(03)00054-1
-
Zhang, S., Wang, J. and Wang, X., "Effect of Calcination Temperature on Structure and Performance of Ni/
$TiO_{2}SiO_{2}$ Catalyst for$CO_{2}$ Reforming of Methane," Journal of Natural Gas Chemistry 17, 179(2008) https://doi.org/10.1016/S1003-9953(08)60048-1 -
Osaki, T. and Mori, T., "Role of Potassium in Carbon-free CO2 Reforming of Methane on K-Promoted Ni/
$AI_{2}O_{3}$ Catalysts," J. Catal. 204, 89(2001) https://doi.org/10.1006/jcat.2001.3382 - Arena, F., Frusteri, F. and Parmaliana, A., "Alkali Promotion of Ni/MgO Catalysts, " Applied Catalysis A: General 187, 127(1999) https://doi.org/10.1016/S0926-860X(99)00196-9
-
Horiuchi, T., Sakuma, K., Fukui, T., Kubo, Y., Osaki, T. and Mori, T., "Suppression of Carbon Deposition in the
$CO_{2}$ Reforming of$CH_{4}$ by Adding Basic Metal Oxides to a Ni/$AL_{2}O_{3}$ Catalyst," Appl. Catal. A: Gen., 144, 111(1996) https://doi.org/10.1016/0926-860X(96)00100-7 -
Laosiripojana, N., Sutthisripok, W. and Assabumrungrat, S., "Synthesis Gas Production from Dry Reforming of Methane over
$CeO_{2}$ Doped Ni/$AL_{2}O_{3}$ : Influence of the Doping Ceria on the Resistance toward Carbon Formation," Chem. Eng. J., 112, 13(2005) https://doi.org/10.1016/j.cej.2005.06.003 - Borowiecki, T. and Go cebiowski, A., "Influence of Molybdenum and Tungsten Additives on the Properties of Nickel Steam Reforming Catalysts," Catal. Lett. 25, 309(1994) https://doi.org/10.1007/BF00816310
- Chen, X. J., Khor, K. A. and Chan, S. H., "Suppression of Carbon Deposition at CeO2-modified Ni/YSZ Anodes in Weakly Humidified CH4 at 850," Electrochem. Solid State Lett., 8, A79 (2005) https://doi.org/10.1149/1.1843791
- Choi, J.-E., Kim, H.-R., Choi, J.-S. and Cheong, J.-S., "Additives for Suppressing Coke Formation in the Hydrocarbon Reforming," Korea Patent (applying) 10-2008-0044767(2008)
- Halmann, M. and Steinfeld, A., "Fuel Saving, Carbon Dioxide Emission Avoidance, and Syngas Production by Tri-Reforming of Flue Gases from Coal- and Gas-fired Power Stations, and by the Carbothermic Reduction of Iron Oxide," Energy 31, 3171 (2006) https://doi.org/10.1016/j.energy.2006.03.009
- Kang, J. S., Kim, D. H., Lee, S. D., Hong, S. I. and Moon, D. J., "Nickel-based Tri-reforming Catalyst for the Production of Synthesis Gas," Appl. Catal. A-Gen. 332, 153(2007) https://doi.org/10.1016/j.apcata.2007.08.017
-
Lee, S.-H., Cho, W., Ju, W.-S., Cho, B.-H., Lee, Y.-C. and Baek, Y.-S., "Tri-reforming of
$CH_{4}$ using$CO_{2}$ for Production of Synthesis Gas to Dimethyl Ether," Catal. Today 87, 133(2003) https://doi.org/10.1016/j.cattod.2003.10.005 -
Song, C. and Pan, W., "Tri-reforming of Methane: A Novel Concept for Catalytic Production of Industrially Useful Synthesis Gas with Desired
$H_{2}$ /CO Ratios," Catal. Today 98, 463(2004) https://doi.org/10.1016/j.cattod.2004.09.054 - Li, Y., Wang, Y., Zhang, X. and Mi, Z., "Thermodynamic Analysis of Autothermal Steam and CO2 Reforming of Methane," International Journal of Hydrogen Energy 33, 2507(2008) https://doi.org/10.1016/j.ijhydene.2008.02.051
- Kendall, S. C. S. K., High Temperature Solid Oxide Fuel Cells - Fundamentals, Design and Application, Elsevier Ltd, 1-3(2003)
- Kendall, S. C. S. K., High temperature Solid Oxide Fuel Cells - Fundamentals, Design and Application, Elsevier Ltd, 89-91(2003)
- Kendall, S. C. S. K., High temperature Solid Oxide Fuel Cells - Fundamentals, Design and Application, Elsevier Ltd, 149-152 (2003)
- Dicks, J. L. A., "Fuel Cell Systems Explains," John Wiley & Sons Ltd, 164(2002)
- Zhang, X., Ohara, S., Chen, H. and Fukui, T., "Conversion of Methane to Syngas in a Solid Oxide Fuel Cell with Ni-SDC Anode and LSGM Electrolyte," Fuel 81, 989(2002) https://doi.org/10.1016/S0016-2361(02)00012-1
- Wang, W., Jiang, S. P., Tok, A. I. Y. and Luo, L., "GDC-impregnated Ni Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells," J. Power. Sources., 159, 68(2006) https://doi.org/10.1016/j.jpowsour.2006.04.051
- Douvartzides, S. and Tsiakaras, P., "Ethanol and Methane Fueled Solid Oxide Fuel Cells: A Comparative Study," IoNics 7, 232(2001) https://doi.org/10.1007/BF02419235
- Fischer, K., Rzepka, M., Stimming, U., Biermann, J. W., Johannaber, M. and Wallentowitz, H., "Performance of Gasoline Fuel Cell Cars - A Simulation Study," Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 219, 889(2005) https://doi.org/10.1243/095440705X11068
- Shiratori, Y., Oshima, T. and Sasaki, K., "Feasibility of Directbiogas SOFC," Int. J. Hydrog. Energy., 33, 6316(2008) https://doi.org/10.1016/j.ijhydene.2008.07.101
- Laosiripojana, N. and Assabumrungrat, S., "Catalytic Steam Reforming of Methane, Methanol, and Ethanol over Ni/YSZ: The Possible Use of These Fuels in Internal Reforming SOFC," J. Power. Sources., 163, 943(2007) https://doi.org/10.1016/j.jpowsour.2006.10.006
- Clarke, S. H., Dicks, A. L., Pointon, K., Smith, T. A. and Swann, A., "Catalytic Aspects of the Steam Reforming of Hydrocarbons in Internal Reforming Fuel Cells," Catal. Today 38, 411(1997) https://doi.org/10.1016/S0920-5861(97)00052-7
- Vollmar, H. E., Maier, C. U., Nescher, C., Merklein, T. and Poppinger, M., "Innovative Concepts for the Coproduction of Electricity and Syngas with Solid Oxide Fuel Cells," J. Power. Sources., 86, 90(2000) https://doi.org/10.1016/S0378-7753(99)00421-8
- Ryu, J.-W., Kang, D.-M., Park, J.-M., Kim, Y.-S., Nam, S.-W., Lee, B.-G., Lee, S.-D. and Moon, D.-J., 'Cogeneration of Both Electricity and Syangas in SOFC System,' The Korea Society for Energy Engineering, 12(3), 67-70(2003)
- Moon, D. J., Park, J. M., Kang, J. S., Yoo, K. S. and Hong, S. I., 'Cogeneration of a Synthesis Gas and Electricity Through Internal Reforming of Methane by Carbon Dioxide in a Solid Oxide Fuel Cell System,' J. Ind. Eng. Chem. 12, 149(2006)
- Moon, D.-J., Ryu, J.-W., Kang, D.-M., Park, J.-M., Lee, S.-D., Nam, S.-W. and Lee, B.-G., 'Reduction Technology of Carbon Dioxide by Electrocatalytic reaction,' Reduction and Treatment Technology of Carbon Dioxide Workshop(1st), Korea(2003-04)
- Ge, Q., Huang, Y., Qiu, F. and Li, S., "Bifunctional Catalysts for Conversion of Synthesis Gas to Dimethyl Ether," Appl. Catal. A: Gen., 167, 23(1998) https://doi.org/10.1016/S0926-860X(97)00290-1
- Sault, A. G. and Datye, A. K., "An Auger Electron Spectroscopy Study of the Activation of Iron Fischer-tropsch Catalysts: Ii. Carbon Monoxide Activation," J. Catal., 140, 136(1993) https://doi.org/10.1006/jcat.1993.1073
- Moon, D. J. and Ryu, J. W., "Electrocatalytic Reforming of Carbon Dioxide by Methane in SOFC System," Catal. Today 87, 255(2003) https://doi.org/10.1016/j.cattod.2003.10.017
- Park, S., Vohs, J. M. and Gorte, R. J., "Direct Oxidation of Hydrocarbons in a Solid-Oxide Fuel Cell," Nature 404, 265(2000) https://doi.org/10.1038/35005040
- Gorte, R. J., Kim, H. and Vohs, J. M., "Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbon," J. Power. Sources., 106, 10(2002) https://doi.org/10.1016/S0378-7753(01)01021-7
- Gross, M. D., Vohs, J. M. and Gorte, R. J., "An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ," J. Electrolchem. Soc. 154, B694(2007) https://doi.org/10.1149/1.2736647
- Rostrup-Nielsen, J. R. and Christiansen, L. J., "Internal Steam Reforming in Fuel cells and Alkali Poisoning," Appl. Catal. A: Gen., 126, 381(1995) https://doi.org/10.1016/0926-860X(95)00028-3
- Meusinger, J., Riensche, E. and Stimming, U., "Reforming of Natural Gas in Solid Oxide Fuel Cell Systems," J. Power. Sources., 71, 315(1998) https://doi.org/10.1016/S0378-7753(97)02763-8
- StaNiforth, J. and Ormerod, R. M., "Implications for Using Biogas as a Fuel Source for Solid Oxide Fuel Cells: Internal Dry Reforming in a Small Tubular Solid Oxide Fuel Cell," Catal. Lett., 81, 19(2002) https://doi.org/10.1023/A:1016000519280
-
Shiratori, Y. and Sasaki, K., "NiO-SCSZ and
$Ni_{0.9}Mg_{0.1}$ O-SCSZbased Anodes under Internal Dry Reforming of Simulated Biogas Mixtures," J. Power. Sources., 180, 738(2008) https://doi.org/10.1016/j.jpowsour.2008.03.001 - Finnerty, C. M., Coe, N. J., Cunningham, R. H. and Ormerod, R. M., "Carbon Formation on and Deactivation of Nickel-based/ Zirconia Anodes in Solid Oxide Fuel Cells running on Methane," Catal. Today 46, 137(1998) https://doi.org/10.1016/S0920-5861(98)00335-6
- Lercher, J. A., Bitter, J. H., Hally, W., Niessen, W. and Seshan, K., 'Design of Stable Catalysts for Methane-carbon Dioxide Reforming,' Studies in Surface Science and Catalysis, 463-472 (1996) https://doi.org/10.1016/S0167-2991(96)80257-6
-
Jung, S., Lu, C., He, H., Ahn, K., Gorte, R. J. and Vohs, J. M., "Influence of Composition and Cu Impregnation Method on the Performance of Cu/
$CeO_{2}$ /YSZ SOFC Anodes," J. Power. Sources., 154, 42(2006) https://doi.org/10.1016/j.jpowsour.2005.04.018 - Gross, M. D., Vohs, J. M. and Gorte, R. J., "Recent Progress in SOFC Anodes for Direct Utilization of Hydrocarbons," J. Mater. Chem. 17, 3071(2007) https://doi.org/10.1039/b702633a
- Shanwen Tao, J. T. S. I., "Discovery and Characterization of Novel Oxide Anodes for Solid Oxide Fuel Cells," The Chemical Record 4, 83(2004) https://doi.org/10.1002/tcr.20003
- Marina, O. A., Canfield, N. L. and Stevenson, J. W., "Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-doped Strontium Titanate," Solid State Ionics 149, 21(2002) https://doi.org/10.1016/S0167-2738(02)00140-6
- Huang, Y.-H., Dass, R. I., Xing, Z.-L. and Goodenough, J. B., "Double Perovskites as Anode Materials for Solid-Oxide Fuel cells," Science 312, 254(2006) https://doi.org/10.1126/science.1125877
- Moon, D.-J., Ryu, J.-W., Kim, T.-Y., Park, J.-M., Kang, D.-M., Lee, B.-G. and Lee, S.-D., "Solid Oxide Fuel Cell(SOFC) for Coproducing Syngas and Electricity by the Internal Reforming of Carbon Dioxide by Hydrocarbons and Electrochemical Membrane Reactor System for Application," Korea Patent 10-2005- 0039465
-
Goula, G., Kiousis, V., Nalbandian, L. and Yentekakis, I. V., "Catalytic and ElectroCatalytic Behavior of Ni-based Cermet Anodes under Internal Dry Reforming of
$CH_{4}+CO_{2}$ Mixtures in SOFCs," Solid State IoNics 177, 2119(2006) https://doi.org/10.1016/j.ssi.2006.03.040 - Janardhanan, V. M., Heuveline, V. and Deutschmann, O., "Performance Analysis of a SOFC under Direct Internal Reforming Conditions," J. Power. Sources., 172, 296(2007) https://doi.org/10.1016/j.jpowsour.2007.07.008
- Klein, J. M., Bultel, Y., Georges, S. and Pons, M., "Modeling of a SOFC Fuelled by Methane: From Direct Internal Reforming to Gradual Internal Reforming," Chem. Eng. Sci., 62, 1636(2007) https://doi.org/10.1016/j.ces.2006.11.034
- Moon, D.-J., Kang, J.-S., Kim, M.-H., Nho, W.-S, Kim, D.-H. and Lee, B.-G., "Ni-based Catalyst for Tri-reforming of Methane and Its Catalysis Application for the Production of Syngas," Korea Patent 10-2007-0043304
- Van Herle, J., Larrain, D., Autissier, N., Wuillemin, Z., Molinelli, M. and Favrat, D., "Modeling and Experimental Validation of Solid Oxide Fuel Cell Materials and Stacks," Elsevier Sci Ltd, 2627-2632(2005) https://doi.org/10.1016/j.jeurceramsoc.2005.03.225
- Koh, J.-H., Yoo, Y.-S., Park, J.-W. and Lim, H. C., "Carbon Deposition and Cell Performance of Ni-YSZ Anode Supported SOFC with Methane Fuel," Solid State IoNics 149, 157(2002) https://doi.org/10.1016/S0167-2738(02)00243-6
- Trembly, J. P., Marquez, A. I., Ohrn, T. R. and Bayless, D. J., "Effects of Coal Syngas and H2S on the Performance of Solid Oxide Fuel Cells: Single-cell Tests," J. Power. Sources., 158, 263 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.055
- Zhi, M., Chen, X., Finklea, H., Celik, I. and Wu, N. Q., "Electrochemical and Microstructural Analysis of Nickel-Yttria-Stabilized Zirconia Electrode Operated in Phosphorus-containing Syngas," J. Power. Sources., 183, 485(2008) https://doi.org/10.1016/j.jpowsour.2008.05.055
- Newsome, D. S., "The Water-Gas Shift Reaction," Catal. Revi., 21,275(1980) https://doi.org/10.1080/03602458008067535
- Davis, B. H., "Fischer-tropsch Synthesis: Relationship Between Iron Catalyst Composition and Process Variables," Catal. Today 84, 83(2003) https://doi.org/10.1016/S0920-5861(03)00304-3
- Liu, Y., Zhang, C. H., Wang, Y., Li, Y., Hao, X., Bai, L., Xiang, H. W., Xu, Y. Y., Zhong, B. and Li, Y. W., "Effect of Co-feeding Carbon Dioxide on Fischer-tropsch Synthesis over an Iron-Manganese Catalyst in a Spinning Basket Reactor," Fuel Process. Technol. 89, 234(2008) https://doi.org/10.1016/j.fuproc.2007.11.002
-
Kim, S.-M., Bae, J. W., Lee, Y.-J. and Jun, K.-W., "Effect of
$CO_{2} in the Feed Stream on the Deactivation of Co/$\gamma$ -Al2O3 Fischer- tropsch Catalyst," Catal. Commu., 9, 2269(2008) https://doi.org/10.1016/j.catcom.2008.05.016 -
Fiato, R. A., Iglesia, E., Rice, G. W., Soled, S. L., T. Inui, M. A. K. I. S. Y. and Yamaguchi, T., 'Iron Catalyzed
$CO_{2}$ Hydrogenation to Liquid Hydrocarbons,' Stud. Surf. Sci. Catal., Elsevier, 339- 344(1998) https://doi.org/10.1016/S0167-2991(98)80767-2 - Jin, Y. and Datye, A. K., "Phase Transformations in iron Fischertropsch Catalysts During Temperature-programmed Reduction," J. Catal., 196, 8(2000) https://doi.org/10.1006/jcat.2000.3024
- Sai Prasad, P., Bae, J., Jun, K.-W. and Lee, K.-W., "Fischer-tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-based Catalysts," Catal. Surv. Asia., 12, 170(2008) https://doi.org/10.1007/s10563-008-9049-1
-
Hwang, J. S., Jun, K.-W. and Lee, K.-W., "Deactivation and Regeneration of Fe-K/alumina Catalyst in
$CO_{2}$ Hydrogenation," Appl. Catal. A: Gen., 208, 217(2001) https://doi.org/10.1016/S0926-860X(00)00701-8 - Choi, P. H., Jun, K.-W., Lee, S.-J., Choi, M.-J. and Lee, K.-W., “"Hydrogenation of Carbon Dioxide over Alumina Supported Fe- K Catalysts,”" Catal. Lett., 40, 115(1996) https://doi.org/10.1007/BF00807467
- Van Steen, E. and Claeys, M., "Fischer-tropsch Catalysts for the Biomass-to Liquid Process," Chem. Eng. Technol. 31, 655(2008) https://doi.org/10.1002/ceat.200800067
- Dictor, R. A. and Bell, A. T., "Fischer-tropsch Synthesis over Reduced and Unreduced Iron Oxide Catalysts," J. Catal.; Vol/Issue: 97:1, Pages: 121(1986) https://doi.org/10.1016/0021-9517(86)90043-6
- Bukur, D. B., Mukesh, D. and Patel, S. A., "Promoter Effects on Precipitated Iron Catalysts for Fischer-tropsch Synthesis," Industrial & Engineering Chemistry Research 29, 194(1990) https://doi.org/10.1021/ie00098a008
- Luo, M. and Davis, B. H., "Fischer-tropsch Synthesis: Group Alkali-earth Metal Promoted Catalysts," Appl. Catal. A: Gen., 246, 171(2003) https://doi.org/10.1016/S0926-860X(03)00024-3
- Hayakawa, H., Tanaka, H. and Fujimoto, K., "Studies on Catalytic Performance of Precipitated Iron/Silica Catalysts for Fischer- tropsch Synthesis," Appl. Catal. A: Gen., 328, 117 (2007) https://doi.org/10.1016/j.apcata.2007.05.035
- Peez-Alonso, F. J., Ojeda, M., Herranz, T., Rojas, S., Gonzeez- Carballo, J. M., Terreros, P. and Fierro, J. L. G., "Carbon Dioxide Hydrogenation over Fe-Ce Catalysts," Catal. Commun., 9, 1945(2008) https://doi.org/10.1016/j.catcom.2008.03.024
- ArcoumaNis, C., Bae, C., Crookes, R. and Kinoshita, E., "The Potential of Dimethyl Ether (DME) as an Alternative Fuel for Compression-ignition Engines: A Review," Fuel 87, 1014(2008) https://doi.org/10.1016/j.fuel.2007.06.007
- Semelsberger, T. A., Borup, R. L. and Greene, H. L., "Dimethyl Ether (DME) as an Alternative Fuel," J. Power. Sources., 156, 497(2006) https://doi.org/10.1016/j.jpowsour.2005.05.082
-
Good, D. A., Francisco, J. S., Jain, A. K. and Wuebbles, D. J., 'Lifetimes and Global Warming Potentials for Dimethyl Ether and for Fluorinated Ethers:
$CH_{3}OCF_{3}$ (E143a),$CHF_{2}OCHF_{2}$ (E134),$CHF_{2}OCF_{3}$ (E125),' J. Geophys. Res. 103 https://doi.org/10.1029/98JD01880 - http://www.gasnews.com/news/main.php
- Kung, H. H., "Methanol Synthesis, " Catal. Rev., 22, 235(1980) https://doi.org/10.1080/03602458008066535
- Spivey, J. J., "Review: Dehydration Catalysts for the Methanol/ Dimethyl Ether Reaction," Chemical Engineering CommuNications 110, 123(1991) https://doi.org/10.1080/00986449108939946
- Yaripour, F., Baghaei, F., Schmidt, I. and Perregaard, J., "Catalytic Dehydration of Methanol to Dimethyl Ether (DME) over Solid-acid Catalysts," Catal. Commu., 6, 147(2005) https://doi.org/10.1016/j.catcom.2004.11.012
- Guisnet, M. and Magnoux, P., "Deactivation by Coking of Zeolite Catalysts. Prevention of Deactivation. Optimal Conditions for Regeneration," Catal. Today 36, 477(1997) https://doi.org/10.1016/S0920-5861(96)00238-6
-
Raoof, F., Taghizadeh, M., Eliassi, A. and Yaripour, F., "Effects of Temperature and Feed Composition on Catalytic Dehydration of Methanol to Dimethyl Ether over
$\gamma$ -Alumina," Fuel 87, 2967(2008) https://doi.org/10.1016/j.fuel.2008.03.025 - Vishwanathan, V., Jun, K.-W., Kim, J.-W. and Roh, H.-S., "Vapour Phase Dehydration of Crude Methanol to Dimethyl Ether over Na-modified H-ZSM-5 Catalysts," Appl. Catal. A: Gen., 276, 251 (2004) https://doi.org/10.1016/j.apcata.2004.08.011
- Shikada, T., Ohno, Y., Ogawa, T., Ono, M., Mizuguchi, M., Tomura, K. and Fujimoto, K., "Direct Synthesis of Dimethyl Ether Form Synthesis Gas," Parmaliana, A.S.D.F.F.V.A.A.F., ed., Elsevier Science Publ B V, 515-520(1998)
- Kim, J.-H., Park, M. J., Kim, S. J., Joo, O.-S. and Jung, K.-D., "DME Synthesis from Synthesis Gas on the Admixed Catalysts of Cu/ZnO/Al2O3 and ZSM-5," Appl. Catal. A: Gen., 264, 37(2004) https://doi.org/10.1016/j.apcata.2003.12.058
- Qi, G.-X., Fei, J.-H., Zheng, X.-M. and Hou, Z.-Y., "DME Synthesis from Carbon Dioxide and Hydrogen over Cu-Mo/HZSM- 5," Catal. Lett., 72, 121 (2001) https://doi.org/10.1023/A:1009049513834
- Luan, Y., Xu, H., Yu, C., Li, W. and Hou, S., "Effects and Control of Steam in the Systems of Methanol and DME Synthesis from Syngas over Cu-based Catalysts," Catal. Lett., 125, 271 (2008) https://doi.org/10.1007/s10562-008-9529-y
- Wang, T. F., Wang, J. F. and Jin, Y., "Slurry Reactors for Gasto- liquid Processes: A Review," Ind. Eng. Chem. Res., 46, 5824 (2007) https://doi.org/10.1021/ie070330t
- Ogawa, T., Inoue, N., Shikada, T., Inokoshi, O. and Ohno, Y., 'Direct Dimethyl Ether (DME) Synthesis from Natural Gas,' Bao, X.X.Y., ed., Elsevier Science Bv, 379-384(2004) https://doi.org/10.1016/S0167-2991(04)80081-8
- Sun, K., Lu, W., Qiu, F., Liu, S. and Xu, X., "Direct Synthesis of DME over Bifunctional Catalyst: Surface Properties and Catalytic Performance," Appl. Catal. A: Gen., 252, 243(2003) https://doi.org/10.1016/S0926-860X(03)00466-6
-
Barbosa, F., Ruiz, V., Monteiro, J., de Avillez, R., Borges, L. and Appel, L., "The Deactivation Modes of Cu/ZnO/
$AL_{2}O_{3}$ and HZSM-5 Physical Mixture in the One-step DME Synthesis," Catal. Lett., 126, 173(2008) https://doi.org/10.1007/s10562-008-9601-7 - Luan, Y., Xu, H., Yu, C., Li, W. and Hou, S., "In-situ Regeneration Mechanisms of Hybrid Catalysts in the One-step Synthesis of Dimethyl Ether from Syngas," Catal. Lett., 115, 23(2007) https://doi.org/10.1007/s10562-007-9066-0
- Wang, L., Qi, Y., Wei, Y., Fang, D., Meng, S. and Liu, Z., "Research on the Acidity of the Double-function Catalyst for DME Synthesis from Syngas," Catal. Lett., 106, 61(2006) https://doi.org/10.1007/s10562-005-9191-6
- Yoo, K. S., Kim, J.-H., Park, M.-J., Kim, S.-J., Joo, O.-S. and Jung, K.-D., "Influence of Solid Acid Catalyst on DME Production Directly from Synthesis Gas over the Admixed Catalyst of Cu/ZnO/Al2O3 and Various SAPO Catalysts," Appl. Catal. A: Gen., 330, 57(2007) https://doi.org/10.1016/j.apcata.2007.07.007
- Moradi, G., Ahmadpour, J. and Yaripour, F., "Systematic Investigation of the Effects of Operating Conditions on the Liquid- Phase Dimethyl Ether (LPDME) Process," Energy & Fuels 22, 3587(2008) https://doi.org/10.1021/ef8004338
- Xu, A., Indala, S., Hertwig, T. A., Pike, R. W., Knopf, F. C., Yaws, C. L. and Hopper, J. R., "Development and Integration of New Processes Consuming Carbon Dioxide in Multi-Plant Chemical Production Complexes, " Clean Technologies and Environmental Policy 7, 97(2005) https://doi.org/10.1007/s10098-004-0270-y