단섬유 강화 에폭시 복합재료의 열적/기계적 특성

Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites

  • 황광춘 (금오공과대학교 고분자공학과) ;
  • 이충희 (금오공과대학교 고분자공학과) ;
  • 이종근 (금오공과대학교 고분자공학과)
  • Huang, Guang-Chun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Chung-Hee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong-Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 발행 : 2009.11.25

초록

고리지방족 에폭시와 산무수물 경화제계에 탄소단섬유(SCF)와 유리단섬유(SGF)를 첨가하여 복합재를 제조한 다음 이들의 열적/기계적 특성을 조사하였다. 열기계분석법으로 측정된 열팽창계수(CTE)의 감소 효과를 보면 낮은 단섬유 함량에서는 두 섬유가 거의 비슷하나, 함량이 증가하면 SCF가 SGF에 비해 훨씬 효과적이었다. SCF 강화 복합재에 대한 CTE 실험값을 이론식에 적용해 본 결과 함량이 낮을 때는 혼합법칙(mixture rule)에 잘 맞으며, 함량이 높아지면 Craft-Christensen 식에 근접하였다. 또한, 유리상($30^{\circ}C$과 고무상($180^{\circ}C$)에서의 저장탄성률은 단섬유를 첨가하였을 때 크게 증가하였다. 전자주사현미경(SEM)으로 파단면을 관찰하여본 결과 이와 같은 결과는 단섬유와 에폭시 매트릭스간의 계면접착력과 밀접한 관계가 있음을 알 수 있었다.

A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCF-reinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E') at $30^{\circ}C$ and $180^{\circ}C$ was greatly enhanced for short fiber-filled composites compared to unfilled specimens, Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E' of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.

키워드

참고문헌

  1. H. Lee and N. Kris, Handbook of Epoxy Resins, McGraw-Hill, New York, 1982
  2. N. Bouillon, J. P. Pascault, and L. Tighzert, J. Appl. Polym. Sci., 38, 2103 (1989) https://doi.org/10.1002/app.1989.070381112
  3. C. Kaynak, O. Orgun, and T. Tincer, Polym. Test., 24, 455 (2005) https://doi.org/10.1016/j.polymertesting.2005.01.004
  4. M. Y. Jeong and D. G. Lee, J. Mater. Process. Tech., 63, 375 (1997) https://doi.org/10.1016/S0924-0136(96)02650-7
  5. K. F. Rogers, L. N. Phillips, D. M. Kingston-Lee, B. Yates, M. J. Overy, J. P. Sargent, and B. A. McCalla, J. Mater. Sci., 12, 718 (1977) https://doi.org/10.1007/BF00548162
  6. X. Y. Gong, Polym. Adv. Tech., 7, 141 (1996) https://doi.org/10.1002/(SICI)1099-1581(199602)7:2<141::AID-PAT447>3.0.CO;2-U
  7. M.V. Alonso, M. L. Auad, and S. Nutt, Comp. Part A: Appl. Sci. Manufac., 37, 1952 (2006) https://doi.org/10.1016/j.compositesa.2005.12.011
  8. C. Kaynak, A. Rikana, and T. Tincer, Polymer, 44, 2433 (2003) https://doi.org/10.1016/S0032-3861(03)00100-9
  9. A. Arikan, C. Kaynak, and T. Tincer, Polym. Comp., 23, 790 (2002) https://doi.org/10.1002/pc.10477
  10. N. A. Isitman, M. Aykol, G. Ozkoc, G. Bayram, and C. Kaynak, Polym. Comp., in Press
  11. M. Run, H. Song, Y. Hao, X. Hu, and C. Yao, Polym. Comp., 30, 776 (2009) https://doi.org/10.1002/pc.20617
  12. W. J. Craft and R. M. Christensen, J. Comp. Mater., 15, 2 (1981) https://doi.org/10.1177/002199838101500102
  13. W. K. Goertzen and M. R. Kessler, J. Therm. Anal. Calor., 93, 87 (2008) https://doi.org/10.1007/s10973-007-8804-2
  14. B. D. Agarwal and L. J. Broutman, Analysis and Performance of Fiber Composites, John Wiley & Sons, New York, 1990
  15. P. Michele, P. Alessandro, and M. Claudio, Polymer, 46, 12065 (2005) https://doi.org/10.1016/j.polymer.2005.10.098
  16. J. T. Saavedra, J. L. Beceiro, S. Naya, and R. Artiaga, Polym. Degrad. Stabil., 93, 1233 (2008)
  17. W. K. Goertzen and M. R. Kessler, J. Appl. Polym. Sci., 109, 647 (2008) https://doi.org/10.1002/app.28071
  18. M. Battistella, M. Cascione, B. Fiedler, M.H.G. Wichmann, M. Quaresimin, and K. Schulte, Composites: Part A, 39, 1851 (2008) https://doi.org/10.1016/j.compositesa.2008.09.010
  19. L. E. Nielsen, Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, 1974
  20. Z. Q. Tao, S. Y. Yang, J. S. Chen, and L. Fan, Eur. Polym. J., 43, 1470 (2007) https://doi.org/10.1016/j.eurpolymj.2007.01.039
  21. Y. Sun, Z. Zhang, K. Moon, and C. P. Wong, J. Polym. Sci., 42, 3849 (2004) https://doi.org/10.1002/polb.20251