Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할

Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis

  • 발행 : 2009.11.15

초록

그래프 컷(graph cuts) 방법은 주어진 사전정보와 각 픽셀간의 유사도를 나타내는 데이터 항(data term)과 이웃하는 픽셀간의 유사도를 나타내는 스무드 항(smoothness term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로, 최근 영상 분할에 많이 이용되고 있다. 기존 그래프 컷 기반의 영상 분할 방법에서 데이터 항을 설정하기 위해 GMM(Gaussian mixture model)을 주로 이용하였으며, 평균과 공분산을 각 클래스를 위한 사전정보로 이용하였다. 이 때문에 클래스의 모양이 초구(hyper-sphere) 또는 초타원(hyper-ellipsoid)일 때만 좋은 성능을 보이는 단점이 있다. 다양한 클래스의 모양에서 좋은 성능을 보이기 위해, 본 논문에서는 mean shift 분석 방법을 이용한 그래프 컷 기반의 자동 영상분할 방법을 제안한다. 데이터 항을 설정하기 위해 $L^*u^*{\upsilon}^*$ 색상공간에서 임의로 선택된 초기 mean으로부터 밀도가 높은 지역인 모드(mode)로 이동하는 mean의 집합들을 사전정보로 이용한다. Mean shift 분석 방법은 군집화에서 좋은 성능을 보이지만, 오랜 수행시간이 소요되는 단점이 있다. 이를 해결하기 위해 특징공간을 3차원 격자로 변형하였으며, mean의 이동은 격자에서 모든 픽셀이 아닌 3차원 윈도우내의 1차원 모멘트(moment)를 이용한다. 실험에서 GMM을 이용한 그래프 컷 기반의 영상분할 방법과 최근 많이 이용되고 있는 mean shift와 normalized cut기반의 영상분할 방법을 제안된 방법과 비교하였으며, Berkeley dataset을 기반으로 앞의 세 가지 방법보다 좋은 성능을 보였다.

A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.

키워드

참고문헌

  1. L.G. Shapiro and G.C. Stockman, 'Computer Vision,' New Jersey, Prentice-Hall, 2001
  2. N. Pal and S. Pal, 'A review on image segmentation techniques,' Pattern Recognition, vol.26, no.9, pp.1277-1294, 1993 https://doi.org/10.1016/0031-3203(93)90135-J
  3. L. Vincent and P. Soille, 'Watersheds in Digital Spaces: An Efficient Algorithm based on Immersion Simulation,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, no.6, pp.583-597, 1991 https://doi.org/10.1109/34.87344
  4. D. Comaniciu and P. Meer, 'Mean Shift: A Robust Approach toward Feature Space Analysis,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, no.5, pp.603-619, 2002 https://doi.org/10.1109/34.1000236
  5. S. Makrogiannis, G. Economou, and S. Fotopoulos, 'A Region Dissimilarity Relation that Combines Feature-Space and Spatial Information for Color Image Segmentation,' IEEE Transactions on System, Man, and Cybernetics, Part B, vol.35, no.1, pp.44-53, 2005 https://doi.org/10.1109/TSMCB.2004.837756
  6. Y. Boykov, O. Veksler, and R. Zabih, 'Fast Approximate Energy Minimization via Graph Cuts,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, no.11, pp.1222-1239, 2001 https://doi.org/10.1109/34.969114
  7. Y. Li, J. Sun, C-K. Tang, and H-Y. Shum, 'Lazy Snapping,' ACM Transactions on Graphics, vol.23, Issue 3, pp.303-308, 2004 https://doi.org/10.1145/1015706.1015719
  8. Y. Boykov and G. Funka-Lea, 'Graph Cuts and Efficient N-D Image Segmentation,' International Journal of Computer Vision, vol.70, no.2, pp.109-131, 2006 https://doi.org/10.1007/s11263-006-7934-5
  9. C. Rother, V. Kolmogorov, and A. Blake, 'Grab-Cut: Interactive Foreground Extraction using Iterated Graph Cuts,' ACM Transactions on Graphics, vol.23, Issue 3, pp.309-314, 2004 https://doi.org/10.1145/1015706.1015720
  10. A. P. Eriksson, C. Olsson, and F. Kahl, 'Image Segmentation with Context,' Proceedings of Scandinavian Conference on Image Analysis, Lecture Notes on Computer Science, vol.4522, pp. 283-292, 2007 https://doi.org/10.1007/978-3-540-73040-8_29
  11. J-S. Kim and K-S. Hong, 'A New Graph Cut-based Multiple Active Contour Algorithm without Initial Contours and Seed Points,' Machine Vision and Applications, vol.19, no.3, pp. 181-193, 2008 https://doi.org/10.1007/s00138-007-0090-2
  12. K. Fukunaga and L.D. Hostetler, 'The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition,' IEEE Transactions on Information Theory, vol.21, pp.32-40, 1975 https://doi.org/10.1109/TIT.1975.1055330
  13. Y. Cheng, 'Mean Shift, Mode Seeking, and Clustering,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, no.8, pp.790-799, 1995 https://doi.org/10.1109/34.400568
  14. D. Comaniciu, 'Nonparametric Robust Methods for Computer Vision,' Ph.D. Thesis, ECE Department, Rutgers University, 2000
  15. G. Wyszecki and W. S. Stiles, Color Science : Concepts and Methods, Quantitative Data and Formulae, 2nd ed. New York : Wiley, 2000
  16. Y. Boykov and V. Kolmogorov, 'An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, no.9, pp.1124-1137, 2004 https://doi.org/10.1109/TPAMI.2004.60
  17. R. Szeliski, R. Zabih and C. Rother, 'A Comparative Study of Energy Minimization Methods for Markov Random Fields,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, no.6, pp.1068-1080, 2008 https://doi.org/10.1109/TPAMI.2007.70844
  18. D. H. Greig, B. T. Porteous, and A. H. Seheult, 'Exact Maximum A Posterior Estimation for Binary Images,' Journal of Royal Statistical Society, Series B (Methodological), vol.51, no.2, pp.271-278, 1989
  19. E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet math. Dokl., 11:1277-1280, 1970
  20. L. Ford and D. Fulkerson, 'Flows in Networks,' Princeton University Press, 1962
  21. Andrew V. Goldberg and Robert E. Tarjan. A New approach to the maximum-flow problem. Journal of the Association for Computing Machinery, 35(4):921-940, October 1988 https://doi.org/10.1145/48014.61051
  22. D. Martin, C. Fowlkes, and J. Malik, 'Learning to Detect Natural Image Boundaries using Local Brightness, Color, and Texture Cues,' IEEE ransactions on Pattern Analysis and Machine Intelligence, vol.26, no.5, pp.530-549, 2004 https://doi.org/10.1109/TPAMI.2004.1273918
  23. J. Shi and J. Malik, 'Normalized Cuts and Image Segmentation,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp. 888-905, 2000 https://doi.org/10.1109/34.868688
  24. D. Martin, C. Fowlkers, D. Tal, and J. Malik, 'A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statics,' Proceedings of IEEE International Conference on Computer Vision, pp.416-423, 2001 https://doi.org/10.1109/ICCV.2001.937655
  25. W. Tao, H. Jin, Y. Zhang, 'Color Image Segmentation based on Mean Shift and Normalized Cuts,' IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol.37, no.5, pp.1382-1390, 2007 https://doi.org/10.1109/TSMCB.2007.902249