• Title/Summary/Keyword: Mean Shift 분석

Search Result 109, Processing Time 0.04 seconds

Modified Mean Shift for Color Image Processing (컬러 영상 처리를 위한 Mean Shift 기법 개선)

  • Hwang, Young-chul;Bae, Jung-ho;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.407-410
    • /
    • 2009
  • 본 논문에서는 개선된 mean shift를 이용한 컬러 영상 분할을 소개한다. Mean shift는 Yizong Cheng에 의해 재조명되고 Dorin Comaniciu 등에 의해 정리되어 영상 필터링(image filtering), 영상 분할(image segmentation), 물체 추적(object tracking) 등 여러 응용 분야에 널리 활용되고 있다. 커널을 이용해 밀도를 추정하고 밀도가 가장 높은 점으로 커널을 연속적으로 이동함으로써 지역적으로 주요한 위치로 데이터 값을 갱신시킨다. 그러나 영상에 포함된 모든 화소에 대해 mean shift를 수행해야하기 때문에 연산 시간이 많이 소요되는 단점이 있다. 본 논문에서는 mean shift 필터링 과정을 분석하고 참조수렴방법과 강제수렴방법을 이용해 소요 시간을 단축시켰다. 모든 점에 대해 mean shift를 수행하는 대신 특정 조건을 만족하는 픽셀은 이웃 픽셀의 수렴 값을 참조하고, mean shift 과정에 진동 또는 미미한 이동을 계속하는 픽셀은 강제 수렴을 실시하였다. 개선된 방법과 기존의 mean shift 방식을 적용하여 영상 필터링과 영상 분할에 적용한 실험에서 결과 영상에는 차이가 적고 기존의 방법에 비해 수행 시간이 24% 정도 소요됨을 확인하였다.

  • PDF

Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis (Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할)

  • Park, An-Jin;Kim, Jung-Whan;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.936-946
    • /
    • 2009
  • A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.

Clothing Color Analysis Techniques using Bilateral Filter and Mean-Shift Algorithm (Bilateral 필터와 Mean-Shift 알고리즘을 이용한 의상 색상 분석기법)

  • Kim, Hye-Min;Jeong, Chang-Seong
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1413-1415
    • /
    • 2015
  • 본 논문에서 우리는 의상영역의 유사성을 검사 시 색상분석에 있어 정확도를 향상시키기 위해 Bilateral 필터와 Mean-Shift 알고리즘을 적용하였다. 본 연구의 평가부분에서 필터를 적용한 영상이 의상영역의 구김이나 빛에 의한 영향이 필터를 적용하지 않은 영상보다 적다는 것을 실험을 통해 증명한다.

The Development of Vehicle Counting System at Intersection Using Mean Shift (Mean Shift를 이용한 교차로 교통량 측정 시스템 개발)

  • Chun, In-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.38-47
    • /
    • 2008
  • A vehicle counting system at intersection is designed and implemented using analyzing a video stream from a camera. To separate foreground image from background, we compare three different methods, among which Li's method is chosen. Blobs are extracted from the foreground image using connected component analysis and the blobs are tracked by a blob tracker, frame by frame. The primary tracker use only the size and location of blob in foreground image. If there is a collision between blobs, the mean-shift tracking algorithm based on color distribution of blob is used. The proposed system is tested using real video data at intersection. If some huristics is applied, the system shows a good detection rate and a low error rate.

  • PDF

Interactive System for Efficient Video Cartooning (효율적인 비디오 카투닝을 위한 인터랙티브 시스템)

  • Hong, Sung-Soo;Yoon, Jong-Chul;Lee, In-Kwon
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.859-864
    • /
    • 2006
  • Mean shift 는 데이터의 특징을 잘 살려내는 None-parametric 방법으로, 특히 영상처리분야에서 많은 각광을 받아왔다. 하지만 좋은 결과를 보장하는 뛰어난 성능에도 불구하고, 높은 메모리소요와 긴 처리시간에 기인하여, 비디오처리 등의 분야에 적용하기엔 현실적인 제약점이 있다. 상기한 제약점을 극복하기 위해, 본 시스템은 비디오를 분석하여 전경과 후경으로 나눈다. 본 논문은 전경으로 분류된 부분에 대해 각 분리된 개체를구분하고, 좌표변환(coordinate shift)을 실행하여 연산을 할 비디오의 연산의 규모를 줄이는 방법론을 제시한다. 이러한 처리로 매우 많은 처리시간이 단축됨을 실험을 통해 알 수 있었다. 다음으로, 나뉘어진 전경에 3D mean shift를 적용하여 생성된 결과물에 대하여 3D cluster data structure 를 생성하고, 이를 이동하여 인터랙티브 에디팅이 가능하도록 하였다. 후경으로 나뉜 데이터는 이미지 한 장으로 축약이 되며, 2D mean shift 기반의 interactive cartooning system 을 통하여 만화화가 된다. 본 논문은 만화 특유의 단순한 톤을 표현하기 위해, 세밀한 분할이 필요한 부분과 그렇지 않은 부분을 따로 구분하여 처리하는 레이어처리방법을 제안한다. 위의 과정을 여러 실사이미지에 적용, 실험해본 결과 기존의 연구결과에 비해 매우 짧은 시간 내에 대상의 특징이 잘 나타낸 양질의 결과물이 생성되었다. 이러한 결과물은 출판, 영상편집분야 등 여러 분야에서 요긴하고 간편하게 사용될 수 있을 것으로 생각된다.

  • PDF

On Tolerance Analysis Using Inflation Factors (확대인자를 이용한 허용차 분석법의 타당성 평가)

  • Seo, Sun-Keun;Cho, You-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.91-104
    • /
    • 2005
  • Tolerance analysis plays an important role in design and manufacturing stages for reducing manufacturing cost by improving producibility. In most production processes encountered in practice, a process mean may shift or drift in the long run although process is in control. This study discusses the feasibility of three most common inflation factors(Bender, Gilson and Six Sigma) as a correction to Root Sum of Squares(RSS) method to compensate heuristically for a shift of process mean and nonnormal component distributions from simulation experiments and proposes the guidelines for choosing the inflation factor.

Eye Tracking Using Neural Network and Mean-shift (신경망과 Mean-shift를 이용한 눈 추적)

  • Kang, Sin-Kuk;Kim, Kyung-Tai;Shin, Yun-Hee;Kim, Na-Yeon;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In this paper, an eye tracking method is presented using a neural network (NN) and mean-shift algorithm that can accurately detect and track user's eyes under the cluttered background. In the proposed method, to deal with the rigid head motion, the facial region is first obtained using skin-color model and con-nected-component analysis. Thereafter the eye regions are localized using neural network (NN)-based tex-ture classifier that discriminates the facial region into eye class and non-eye class, which enables our method to accurately detect users' eyes even if they put on glasses. Once the eye region is localized, they are continuously and correctly tracking by mean-shift algorithm. To assess the validity of the proposed method, it is applied to the interface system using eye movement and is tested with a group of 25 users through playing a 'aligns games.' The results show that the system process more than 30 frames/sec on PC for the $320{\times}240$ size input image and supply a user-friendly and convenient access to a computer in real-time operation.

Object Tracking Algorithm Using Weighted Color Centroids Shifting (가중 컬러 중심 이동을 이용한 물체 추적 알고리즘)

  • Choi, Eun-Cheol;Lee, Suk-Ho;Kang, Moon-Gi
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.236-247
    • /
    • 2010
  • Recently, mean shift tracking algorithms have been proposed which use the information of color histogram together with some spatial information provided by the kernel. In spite of their fast speed, the algorithms are suffer from an inherent instability problem which is due to the use of an isotropic kernel for spatiality and the use of the Bhattacharyya coefficient as a similarity function. In this paper, we analyze how the kernel and the Bhattacharyya coefficient can arouse the instability problem. Based on the analysis, we propose a novel tracking scheme that uses a new representation of the location of the target which is constrained by the color, the area, and the spatiality information of the target in a more stable way than the mean shift algorithm. With this representation, the target localization in the next frame can be achieved by one step computation, which makes the tracking stable, even in difficult situations such as low-rate-frame environment, and partial occlusion.

Multi-Small Target Tracking Algorithm in Infrared Image Sequences (적외선 연속 영상에서 다중 소형 표적 추적 알고리즘)

  • Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • In this paper, we propose an algorithm to track multi-small targets in infrared image sequences in case of dissipation or creation of targets by using the background estimation filter, Kahnan filter and mean shift algorithm. We detect target candidates in a still image by subtracting an original image from an background estimation image, and we track multi-targets by using Kahnan filter and target selection. At last, we adjust specific position of targets by using mean shift algorithm In the experiments, we compare the performance of each background estimation filters, and verified that proposed algorithm exhibits better performance compared to classic methods.