Abstract
We propose an algorithm and system which generates 3D stereo image by composition of 2D image from 4 multiple clusters which 1 cluster was composed of 4 multiple cameras based on network. Proposed Schemes have a network-based client-server architecture for load balancing of system caused to process a large amounts of data with real-time as well as multiple cluster environments. In addition, we make use of JPEG compression and RAM disk method for better performance. Our scheme first converts input images from 4 channel, 16 cameras to binary image. And then we generate 3D stereo images after applying edge detection algorithm such as Sobel algorithm and Prewiit algorithm used to get disparities from images of 16 multiple cameras. With respect of performance results, the proposed scheme takes about 0.05 sec. to transfer image from client to server as well as 0.84 to generate 3D stereo images after composing 2D images from 16 multiple cameras. We finally confirm that our scheme is efficient to generate 3D stereo images in multiple view and multiple clusters environments with real-time.
네트워크를 기반으로 하나의 클러스터가 4개의 카메라로 구성된 4개의 다중 클러스터로부터 2D 영상을 조합하여 3D 입체 영상을 생성하는 알고리즘 및 시스템을 제안한다. 제안하는 기법은 다중 클러스터 환경에서 동작하고 실시간 대용량의 데이터 처리로 인한 시스템의 부하를 분산시키기 위해 네트워크를 이용한 서버-클라이언트 구조를 가진다. 아울러 성능 향상을 고려해 JPEG 압축과 램 디스크 방식을 적용한다. 4채널 16개의 카메라로부터 입력되는 입력 영상에 대해서 이진화 영상을 구하고, Sobel 및 Prewitt 등의 에지 검출 알고리즘을 적용시킨 후 영상들 간의 시차를 구한 후에 3D 입체 영상을 생성한다. 성능 분석 결과, 클라이언트에서 서버로 전송하는 전송시간은 약 0.05초가 소요되며, 4채널 16개의 카메라로부터 2D 영상을 조합하여 3D 입체 영상을 생성하는 알고리즘에 소요되는 시간은 약 0.84초가 소요된다. 이를 통해 실시간으로 다시점 및 다중 클러스터 환경에서 3D 입체 영상을 생성하는 효율적인 시스템임을 확인할 수 있었다.