DOI QR코드

DOI QR Code

Graphene Synthesis by Low Temperature Chemical Vapor Deposition and Rapid Thermal Anneal

저온 화학기상증착법 및 급속가열 공정을 이용한 그래핀의 합성

  • 임성규 (나노종합팹센터 나노공정기술부) ;
  • 문정훈 (한국과학기술원 전자전산학부) ;
  • 이희덕 (충남대학교 전자공학과) ;
  • 유정호 (나노종합팹센터 나노공정기술부) ;
  • 양준모 (나노종합팹센터 나노공정기술부) ;
  • 왕진석 (충남대학교 전자공학과)
  • Published : 2009.12.01

Abstract

As a substitute material for silicon, we synthesized few layer graphene (FLG) by CVD process with a 300-nm-thick nickel film deposited on the silicon substrate and found out the lowest temperature for graphene synthesis. Raman spectroscopy study showed that the D peak (wave length : ${\sim}1,350\;cm^{-1}$) of graphene was minimized and then the 2D one (wave length : ${sim}2,700\;cm^{-1}$) appeared when rapid thermal anneal is carried out with the $C_2H_2$ treated nickel film. This study demonstrates that a high quality FLG formed at a low temperature of $400^{\circ}C$ is applicable as CMOS devices and transparent electrode materials.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, 'Electric field effect in atomically thin carbon films', Science, Vol. 306, No. 5696, p. 666, 2004 https://doi.org/10.1126/science.1102896
  2. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and Hong B. H., 'Large-scale pattern growth of graphene films for stretchable transparent electrodes', Nature, Vol. 457, No. 7230, p. 706, 2009 https://doi.org/10.1038/nature07719
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, 'Two-dimensional gas of massless dirac fermions in graphene', Nature, Vol. 438, No. 7065, p. 197, 2005 https://doi.org/10.1038/nature04233
  4. Y. Zhang, Y. W. Tan, H. L. Stormer, and P Kim, 'Experimental observation of the Quantum Hall effect and Berry's phase in graphene', Nature, Vol. 438, No. 7065, p. 201, 2005 https://doi.org/10.1038/nature04235
  5. A. K. Geim and K. S. Novoselov, 'The rise of graphene', Nature Materials, Vol. 6, No. 3, p. 183, 2007 https://doi.org/10.1038/nmat1849
  6. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Tormer, 'Ultrahigh electron mobility in suspended graphene', Solid State Commun., Vol. 146, No. 9-10, p. 351, 2008 https://doi.org/10.1016/j.ssc.2008.02.024
  7. A. K. Geim and P. Kim, 'Carbon wonderland', Scientific American, Vol. 208, No. 4, p. 90, 2008
  8. M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, 'Energy band-gap engineering of graphene nanoribbons', Phys. Rev. Lett., Vol. 98, No. 20, p. 206805, 2007 https://doi.org/10.1103/PhysRevLett.98.206805
  9. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, 'Chemically derived, ultrasmooth graphene nanoribbon semiconductors', Science, Vol. 319, No. 5867, p. 1229, 2008 https://doi.org/10.1126/science.1150878
  10. X. Wang, X. Li, L. Zhang, L. Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, 'N-doping of graphene through electrothermal reactions with ammonia', Science, Vol. 324, No. 5928, p. 768, 2009 https://doi.org/10.1126/science.1170335
  11. C. Virojanadara, M. Syväjarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov, and T. Balasubramanian, 'Homogeneous large-area graphene layer growth on 6HSiC (0001)', Phys. Rev. B, Vol. 78, No. 24, p. 245403, 2008 https://doi.org/10.1103/PhysRevB.78.245403
  12. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, 'Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide', Nature Materials, Vol. 8, No. 3, p. 203, 2009 https://doi.org/10.1038/nmat2382
  13. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, 'Graphene segregated on Ni surfaces and transferred to insulators', Appl. Phys. Lett., Vol. 93. No. 11, p. 113103, 2008 https://doi.org/10.1063/1.2982585