Charge Carrier Photogeneration and Hole Transport Properties of Blends of a $\pi$-Conjugated Polymer and an Organic-Inorganic Hybrid Material

  • Han, Jung-Wook (Department of Chemistry, Konkuk University) ;
  • An, Jong-Deok (Department of Chemistry, Konkuk University) ;
  • Jana, R.N. (Department of Chemistry, Konkuk University) ;
  • Jung, Kyung-Na (Department of Chemistry, Konkuk University) ;
  • Do, Jung-Hwan (Department of Chemistry, Konkuk University) ;
  • Pyo, Seung-Moon (Department of Chemistry, Konkuk University) ;
  • Im, Chan (Department of Chemistry, Konkuk University)
  • 발행 : 2009.11.25

초록

This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), $\pi$-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)$VOPO_4{\cdot}H_2O$ (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) $VOPO_4{\cdot}H_2O$, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)$VOPO_4{\cdot}H_2O$, suggesting that transport occurred via (PEA)$VOPO_4{\cdot}H_2O$ molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.

키워드

참고문헌

  1. P. Suresh, P. Balaraju, S. K. Sharma, M. S. Roy, and G. D. Sharma, Sol. Energ. Mater. Sol.Cell., 92, 900 (2008) https://doi.org/10.1016/j.solmat.2008.02.028
  2. S. Gunes, D. Baran, G. Gunbas, F. Ozyurt, A. Fuchsbauer, N. S. Sariciftci, and L. Toppare, Sol. Energ. Mater. Sol. Cell., 92, 1162 (2008) https://doi.org/10.1016/j.solmat.2008.04.004
  3. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, Adv. Mater., 20, 3924 (2008) https://doi.org/10.1002/adma.200800366
  4. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Materials, 4, 864 (2005) https://doi.org/10.1038/nmat1500
  5. H. K. Kim, S. G. Roh, K. S. Hong, J. W. Ka, N. S. Baek, J. B. Oh, M. K. Nah, Y. H. Cha, and J. Ko, Macromol. Res., 11, 133 (2003) https://doi.org/10.1007/BF03218343
  6. E. Stathatos, P. Lianos, V. Jovanovski, and B. Orel, J. Photochem. Photobiol. A: Chem., 169, 57 (2005) https://doi.org/10.1016/j.jphotochem.2004.06.007
  7. K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegoda, and L. A. A. De Silva, Chem. Mater., 11, 2474 (1999) https://doi.org/10.1021/cm990165a
  8. R. S. Mane, J. Chang, D. Hama, B. N. Pawar, T. Ganesh, B. W. Cho, J. K. Lee, and S. H. Han, Curr. Appl. Phys., 9, 87 (2009) https://doi.org/10.1016/j.cap.2007.11.013
  9. H. J. Shim, D. W. Kim, C. Lee, and Y. Kang, Macromol. Res., 16, 424 (2008) https://doi.org/10.1007/BF03218540
  10. H. Jin, Y. Hou, F. Teng, P. Kopola, M. Tuomikoski, and A. Maaninen, Sol. Energ. Mater. Sol. Cell., 93, 289 (2009) https://doi.org/10.1016/j.solmat.2008.10.025
  11. S. Cho, J. K. Lee, J. S. Moon, J. Yuen, K. Lee, and A. J. Heeger, Org. Elec., 9, 1107 (2008) https://doi.org/10.1016/j.orgel.2008.08.017
  12. C. Girotto, D. Cheyns, T. Aernouts, F. Banishoeib, L. Lutsen, T. J. Cleij, D. Vanderzande, J. Genoe, J. Poortmans, and P. Heremans, Org. Elec., 9, 740 (2008) https://doi.org/10.1016/j.orgel.2008.05.014
  13. M. Wang, Y. Lian, and X. Wang, Curr. Appl. Phys., 9, 189 (2009) https://doi.org/10.1016/j.cap.2008.01.009
  14. J. C. Lee, W. Lee, S. H. Han, T. G. Kim, and Y. M. Sung, Electrochem. Comm., 11, 231 (2009) https://doi.org/10.1016/j.elecom.2008.11.021
  15. C. W. Hsu, L. Wanga, and W. F. Su, J. Colloid Interf. Sci., 329, 182 (2009) https://doi.org/10.1016/j.jcis.2008.10.008
  16. Z. J. Wang, S. C. Qu, X. B. Zeng, J. P. Liu, C. S. Zhang, F. R. Tan, L. Jin, and Z. G. Wang, Appl. Surf. Sci., 255, 1916 (2008) https://doi.org/10.1016/j.apsusc.2008.06.138
  17. H. J. Chen, L. Y. Wang, and W. Y. Chiu, Mat. Chem. Phys., 112, 551 (2008) https://doi.org/10.1016/j.matchemphys.2008.06.014
  18. S. H. Jin, J. M. Shim, S. J. Jung, S. C. Kim, B. V. K. Naidu, W. S. Shi, Y. S. Gal, J. W. Lee, J. H. Kim, and J. K. Lee, Macromol. Res., 14, 524 (2006) https://doi.org/10.1007/BF03218719
  19. J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, Org. Elec., 9, 396 (2008) https://doi.org/10.1016/j.orgel.2008.01.005
  20. D. P. West, M. D. Rahn, C. Im, and H. Bassler, Chem. Phys. Lett., 326, 407 (2000) https://doi.org/10.1016/S0009-2614(00)00849-6
  21. I. G owacki, J. Jung, and J. Ulanski, Synth. Met., 109, 143 (2000) https://doi.org/10.1016/S0379-6779(99)00215-5
  22. J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, Chem. Phys., 245, 417 (1999) https://doi.org/10.1016/S0301-0104(99)00057-9
  23. K. S. Narayan and G. L. Murthy, Chem. Phys. Lett., 276, 441 (1997) https://doi.org/10.1016/S0009-2614(97)00868-3
  24. M. Y. Song, K. J. Kim, and D. Y. Kim, Macromol. Res., 14, 630 (2006) https://doi.org/10.1007/BF03218735
  25. S. Q. Min, H. Y. Bing, L. Yan, F. Z. Hui, and L. X. Jun, Chin. Phys. Lett., 26, 017202 (2009) https://doi.org/10.1088/0256-307X/26/1/017202
  26. S. E. Watkins, K. L. Chan, S. Y. Cho, N. R. Evans, A. C. Grimsdale, A. B. Holmes, C. S. K. Mak, A. J. Sandee, and C. K. Williams, Macromol. Res., 15, 129(2007) https://doi.org/10.1007/BF03218763
  27. P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerography, Marcel Dekker Inc., New York, 1998, p 459
  28. H. Hoegl, G. Barchietto, and D. Tar, J. Photochem. Photobiol., 16, 335 (1972)
  29. G. Weiser, J. Appl. Phys., 43, 5028 (1972) https://doi.org/10.1063/1.1661064
  30. D. M. Pai, J. F. Yanus, and M. Stolka, J. Phys. Chem., 88, 4714 (1984) https://doi.org/10.1021/j150664a054
  31. P. J. Reucroft and K. Takahashi, J. Non Cryst. Solids, 17, 71 (1975) https://doi.org/10.1016/0022-3093(75)90114-3
  32. B. Reimer and H. B${\ddot{a}}$ssler, Phys. Status Solidi(a), 51, 445 (1979) https://doi.org/10.1002/pssa.2210510216
  33. J. Do, R. P. Bontchev, and A. J. Jacobson, Inorg. Chem., 39, 3230 (2000) https://doi.org/10.1021/ic0000303
  34. R. D. Willett, Acta Crystallogr., C46, 565 (1990)
  35. D. B. Mitzi, J. Solid State Chem., 145, 695 (1999)
  36. J. H. Park, O. O. Park, J. Kim, J. W. Yu, J. K. Kim, and Y. C. Kim, Curr. Appl. Phys., 4, 659 (2004) https://doi.org/10.1016/j.cap.2003.11.066
  37. D. Pentlehner, I. Grau, and H. Yersin, Chem. Phys. Lett., 455, 72 (2008) https://doi.org/10.1016/j.cplett.2008.02.036
  38. V. Chasteen, J. O. Harter, G. Rumbles, J. C. Scott, Y. Nakazawa, M. Jones, H.-H H${\ddot{o}}$rhold, H. Tillman, and S. A. Carter, J. Appl. Phys., 99, 033709 (2006) https://doi.org/10.1063/1.2168046
  39. C. Im, E. V. Emelianova, and H. B${\ddot{a}}$ssler, J. Chem. Phys., 117, 2961 (2002) https://doi.org/10.1063/1.1490581
  40. N. S. Sariciftci, D. Braun, C. Zhang, V. Srdranov, A. J. Heeger, and F. Wudl, Auul. Phys. Lett., 62, 585 (1993) https://doi.org/10.1063/1.108863
  41. H. J. Zhai, J. Dobler, J. Sauer, and L. S. Wang, J. Am. Chem. Soc., 129, 13270 (2007) https://doi.org/10.1021/ja0750874
  42. C. Wang, Z. X. Guo, S. Fu, W. Wu, and D. Zhu, Prog. Polym. Sci., 29, 1079 (2004) https://doi.org/10.1016/j.progpolymsci.2004.08.001
  43. P. A. C. Quist, T. Martens, J. V. Manca, T. J. Savenije, and L. D. A. Siebbeles, Sol. Energ. Mater. Sol. Cell., 90, 362 (2006) https://doi.org/10.1016/j.solmat.2005.04.026
  44. S. V. Chasteen, V. Sholin, S. A. Carter, and G. Rumbles, Sol. Energ. Mater. Sol. Cell., 92, 651 (2008) https://doi.org/10.1016/j.solmat.2008.01.014
  45. G. D. Sharma, P. B. Raju, and M. S. Roy, Sol. Energ. Mater. Sol.Cell., 92, 261 (2008) https://doi.org/10.1016/j.solmat.2007.08.013
  46. H. Hoppe and N. S. Sariciftci, J. Mater. Chem., 16, 45 (2006) https://doi.org/10.1039/b510618b