Effect of Multi-walled Carbon Nanotube Dispersion on the Electrical, Morphological and Rheological Properties of Polycarbonate/Multi-walled Carbon Nanotube Composites

  • Han, Mi-Sun (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Yun-Kyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Heon-Sang (Department of Chemical Engineering, Dong-A University) ;
  • Joo, Jin-Soo (Department of Physics, Korea University) ;
  • Park, Min (Hybrid Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Jung (Hybrid Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Chong-Rae (Department of Materials Science and Engineering, Seoul National University)
  • Published : 2009.11.25

Abstract

The effect of a multiwalled carbon nanotube (MWCNT) dispersion on the electrical, morphological and rheological properties of polycarbonate (PC)/MWCNT composites was investigated, with and without pretreating the MWCNTs with hydrogen peroxide oxidation and lyophilization. The resulting PC/treated MWCNT composites showed higher electrical conductivity than the PC/untreated MWCNT composites. The morphological behavior indicated the treated composites to have greater dispersion of MWCNTs in the PC matrix. In addition, the electromagnetic interference shielding efficiency (EMI SE) of the treated composites was higher than that of the untreated ones. Rheological studies of the composites showed that the complex viscosity of the treated composites was higher than the untreated ones due to increased dispersion of the MWCNTs in the PC matrix, which is consistent with the electrical conductivity, EMI SE and morphological studies of the treated composites. The latter results suggested that the increased electrical conductivity and EMI SE of the treated composites were mainly due to the increased dispersion of MWCNTs in the PC matrix.

Keywords

References

  1. P. P${\ddot{o}}$tschke, A. R. Bhattacharyy, and A. Janke, Polymer, 44, 8061 (2003) https://doi.org/10.1016/j.polymer.2003.10.003
  2. P. P${\ddot{o}}$tschke, B. Kretzschmar, and A. Janke, Compos. Sci. Technol., 67, 855 (2007) https://doi.org/10.1016/j.compscitech.2006.02.034
  3. S. H. Jin, D. K. Choi, and D. S. Lee, Colloid Surf. A, 313, 242 (2008) https://doi.org/10.1016/j.colsurfa.2007.04.104
  4. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, Carbon, 43, 23 (2005) https://doi.org/10.1016/j.carbon.2004.08.015
  5. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004) https://doi.org/10.1021/ma049164g
  6. C. K. Kum, Y. T. Sung, M. S. Han, W. N. Kim, H. S. Lee, S. J. Lee, and J. Joo, Macromol. Res., 14, 456 (2006) https://doi.org/10.1007/BF03219110
  7. B. S. Kim, K. D. Suh, and B. Kim, Macromol. Res., 16, 76 (2008) https://doi.org/10.1007/BF03218966
  8. A. Eitan, F. T. Fisher, R. Andrews, L. C. Brinson, and L. S. Schadler, Compos. Sci. Technol., 66, 1162 (2006) https://doi.org/10.1016/j.compscitech.2005.10.004
  9. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, and X. He, Carbon, 45, 1614 (2007) https://doi.org/10.1016/j.carbon.2007.04.016
  10. J. S. Joo and C. Y. Lee, J. Appl. Phys., 88, 513 (2000) https://doi.org/10.1063/1.373688
  11. Z. Liu, G. Bai, T. Huang, Y. Ma, F. Du, and F. Li, Carbon, 45, 821 (2007) https://doi.org/10.1016/j.carbon.2006.11.020
  12. Y. J. Kim, K. J. An, K. S. Suh, H. D. Choi, J. H. Kwon, and Y. C. Chung, IEEE Trans. Electromagn. Compat., 47, 872 (2005) https://doi.org/10.1109/TEMC.2005.858759
  13. Y. Yang and M. C. Gupta, Nano Lett., 5, 2131 (2005) https://doi.org/10.1021/nl051375r
  14. H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, and H. S. Yoon, Appl. Phys. Lett., 84, 589 (2004) https://doi.org/10.1063/1.1641167
  15. N. Li, Y. Huang, F. Du, X. He, X. Lin, and H. Gao, Nano Lett., 6, 1141 (2006) https://doi.org/10.1021/nl0602589
  16. Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, and C. K. Kum, Polymer, 47, 4434 (2006) https://doi.org/10.1016/j.polymer.2006.04.008
  17. E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, Phys. Rev. E, 52, 819 (1995) https://doi.org/10.1103/PhysRevE.52.819
  18. S. Lefrant, Curr. Appl. Phys., 2, 479 (2002) https://doi.org/10.1016/S1567-1739(02)00161-X
  19. N. F. Colaneri and L.W. Shacklette, IEEE Trans. Instr. Meas., 41, 921 (1992) https://doi.org/10.1109/19.199435
  20. B. Fugetsu, E. Sano, M. Sunada, Y. Sambongi, T. Shibuya, and X. Wang, Carbon, 46, 1175 (2008) https://doi.org/10.1016/j.carbon.2008.04.019
  21. Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, Adv. Mater., 17, 1999 (2005) https://doi.org/10.1002/adma.200500615
  22. D. D. L. Chung, Carbon, 39, 279 (2001) https://doi.org/10.1016/S0008-6223(00)00184-6
  23. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed., Taylor & Francis, London, 1992
  24. I. Park, M. Park, and J. Kim, Macromol. Res., 16, 498 (2007)
  25. P. C. Ma, B. Z. Tang, and J. K. Kim, Carbon, 46, 1497 (2008) https://doi.org/10.1016/j.carbon.2008.06.048
  26. K. H. Kim and W. H. Jo, Macromol. Res., 16, 749 (2008) https://doi.org/10.1007/BF03218591