DOI QR코드

DOI QR Code

Two Novel Duck Antibacterial Peptides, Avian $\beta$-Defensins 9 and 10, with Antimicrobial Activity

  • Ma, Deying (Institute of Animal Nutrition, Northeast Agricultural University) ;
  • Liao, Wenyan (Institute of Animal Nutrition, Northeast Agricultural University) ;
  • Wang, Ruiqin (Institute of Animal Nutrition, Northeast Agricultural University) ;
  • Han, Zongxi (Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Liu, Shengwang (Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
  • Published : 2009.11.30

Abstract

Two novel avian $\beta$-defensins (AvBDs) isolated from duck liver were characterized and their homologies with other AvBDs were analyzed. They were shown to be duck AvBD9 and AvBD10. The mRNA expression of the two genes was analyzed in 17 different tissues from 1-28-day-old ducks. AvBD9 was differentially expressed in the tissues, with especially high levels of expression in liver, kidney, crop, and trachea, whereas AvBD10 was only expressed in the liver and kidney of ducks at all the ages investigated. We produced and purified GST-tagged recombinant AvBD9 and AvBDI0 by expressing the two genes in Escherichia coli. Both recombinant proteins exhibited antimicrobial activity against several bacterial strains. The results revealed that both recombinant proteins retained their antimicrobial activities against Staphylococcus aureus under a range of different temperatures ($-70^{\circ}C-100^{\circ}C$) and pH values (pH 3-12).

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Billet, P., J. L. Dimarcq, C. Hetru, M. Lagueux, M. M. Charlet, G Hegy, A. Van Dorsselaer, and J. A. Hovmann. 1993. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268: 14893-14897
  3. Evans, E. W., G. G. Beach, and J. Wunderlich. 1994. Isolation of antimicrobial peptides from avian heterophils. J. Leukoc. Biol. 56: 661-665
  4. Evans, E. W., K. M. Beach, and M. W. Moore. 1995. Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THP1, and THP3. Vet. Microbiol. 47: 295-303 https://doi.org/10.1016/0378-1135(95)00126-3
  5. Froy, O. and M. Gurevita. 2003. Arthropod and mollusk defensins - evolution by exon-shuffiing. Trends Genet. 19: 684-687 https://doi.org/10.1016/j.tig.2003.10.010
  6. Ganz, T. 2003. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3: 710-720 https://doi.org/10.1038/nri1180
  7. Ganz, T. 2005. Defensins and other antimicrobial peptides: A historical perspective and an update. Comb. Chem. High Throughput Screen. 8:209-217 https://doi.org/10.2174/1386207053764594
  8. Harmon, B. G. 1988. Avian heterophils in flammation and disease resistance. Poult. Sci. 77: 972-977
  9. Harwig, S. S. L., K. M. Swiderek, and V. N. Kokryakov. 1994. Gallinacins cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 342: 218-285
  10. Higgins, D. G and P. M. Sharp. 1988. CLUSTAL: A package for performing multiple sequence alignment on a microcomputer. Gene 73: 237-244 https://doi.org/10.1016/0378-1119(88)90330-7
  11. Higgs, R., D. J. Lynn, and S. Gaines. 2005. The synthetic form of a novel chicken betadefensin identifiedin silico is predominantly active against intestinal pathogens. Immunogenetics 57: 90-98 https://doi.org/10.1007/s00251-005-0777-3
  12. Hughes, A. L. and M. Yeager. 1997. Coordinated amino acid changes in the evolution of mammalian defensins. J. Mol. Evol. 44: 675-682 https://doi.org/10.1007/PL00006191
  13. Hughes, A. L. 1999. Evolutionary diversification of the mammalian defensins. Cell Mol. Life Sci. 56: 94-103 https://doi.org/10.1007/s000180050010
  14. Lehrer, R. I. and T. Ganz. 2002. Defensins of vertebrate animals. Curr. Opin. Immunol. 14: 96-102 https://doi.org/10.1016/S0952-7915(01)00303-X
  15. Lynn, D. J., R. Higgs, and S. Gaines. 2004. Bioinfonnatic discovery and initial characterization of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56: 170-177 https://doi.org/10.1007/s00251-004-0675-0
  16. Lynn, D. J., R. Higgs, A. T. Lloyd, V. Herve-Grepinet, Y. Nys, F. S. L. Brinkman, et al. 2007. Avian beta-defensin nomenclature: A community proposed update. Immunol. Lett. 110: 86-89 https://doi.org/10.1016/j.imlet.2007.03.007
  17. Ma, D. Y., S. W. Uu, Z. X. Han, Y. J. Li, and A. S. Shan. 2008. Expression and characterization of recombinant gallinacin-9 and gallinacin-8 in Escherichia coli. Protein Express. Purif. 58: 284-291 https://doi.org/10.1016/j.pep.2007.11.017
  18. Milona, P., C. L. Townes, R. M. Bevan, and J. Hall. 2007. The chicken host peptides gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochem. Biophys. Res. Commun. 356: 169-174 https://doi.org/10.1016/j.bbrc.2007.02.098
  19. Satchell, D. P., T. Sheynis, Y. Shirafuji, S. Kolusheva, A. J. Ouellette, and R. Jelinek. 2003. Interactions of mouse Paneth cell alpha-defensins and alpha-defensin precursors with membranes. Prosegment inhibition of peptide association with biomimetic membranes. J. Biol. Chem. 278: 13838-13846 https://doi.org/10.1074/jbc.M212115200
  20. Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  21. Schutte, B. C. and P. B. McCray. 2002. Beta defensins in lung host defense. Annu. Rev. Physiol. 64: 709-748 https://doi.org/10.1146/annurev.physiol.64.081501.134340
  22. Sugiarto, H. and P. L. Yu. 2004. Avian antimicrobial peptides: The defense role of beta-defensins. Biochem. Biophys. Res. Commun. 323: 721-727 https://doi.org/10.1016/j.bbrc.2004.08.162
  23. Sugiarto, H. and P. L. Yu. 2006. Identification of three novel ostricacins: An update on the phylogenetic perspective of $\beta$-defensins. Int. J. Antimicrob. Agents 27: 229-235 https://doi.org/10.1016/j.ijantimicag.2005.10.013
  24. Thomma, B. P., B. P. Cammune, and K. Thevissen. 2002. Plant desensins. Planta 216: 193-202 https://doi.org/10.1007/s00425-002-0902-6
  25. Thouzeau, C., Y. Le Maho, and G. Froget. 2003. Sphenicins, avian $\beta$-defensins in preserved stomach contents of the King Penguin Aptenodytes patagonicus. J. Biol. Chem. 27: 51053-51058
  26. van Dijk, A., E. J. A. Veldhuizen, S. I. C. Kalkhove, J. L. M. T. Bokhoven, R. A. Romijn, and H. P. Haagsman. 2007. The $\beta$-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Chemother. 51: 912-922 https://doi.org/10.1128/AAC.00568-06
  27. Xiao, Y., A. L. Hughes, J. Ando, M. Yoichi, J. Cheng, D. Skinner-Noble, and G Zhang. 2004. A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: Implications for the origin and evolution of mammalian defensins. BMC Genomics. 5: 56-67 https://doi.org/10.1186/1471-2164-5-56
  28. Yu, P. L., S. D. Choudhury, and K. Ahrens. 2001. Purification and characterization of the antimicrobial peptide, ostricacin. Biotechnol. Lett. 23: 207-210 https://doi.org/10.1023/A:1005623806445

Cited by

  1. Identification and characterization of an avian β-defensin orthologue, avian β-defensin 9, from quails vol.87, pp.4, 2009, https://doi.org/10.1007/s00253-010-2591-6
  2. Identification, Expression and Activity Analyses of Five Novel Duck Beta-Defensins vol.7, pp.10, 2009, https://doi.org/10.1371/journal.pone.0047743
  3. Functional analysis and induction of four novel goose (Anser cygnoides) avian β-defensins in response to salmonella enteritidis infection vol.35, pp.2, 2009, https://doi.org/10.1016/j.cimid.2012.01.006
  4. Expression and Identification of Porcine β-Defensin 1 in Escherichia coli and Up-Regulation by Streptococcus Infection in Porcine Tongue In Vivo vol.18, pp.2, 2009, https://doi.org/10.1007/s10989-011-9287-3
  5. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi vol.5, pp.None, 2009, https://doi.org/10.3389/fcimb.2015.00036
  6. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC) vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.00637