DOI QR코드

DOI QR Code

In Vitro Antioxidant Activity of 5-HMF Isolated from Marine Red Alga Laurencia undulata in Free Radical Mediated Oxidative Systems

  • Li, Yong-Xin (Department of Chemistry, Pukyong National University) ;
  • Li, Yong (Marine Bioprocess Research Center, Pukyong National University) ;
  • Qian, Zhong-Ji (Marine Bioprocess Research Center, Pukyong National University) ;
  • Kim, Moon-Moo (Department of Chemistry, Dong-Eui University) ;
  • Kim, Se-Kwon (Department of Chemistry, Pukyong National University)
  • Published : 2009.11.30

Abstract

Marine red algae of genus Laurencia are becoming the most important resources to produce unique natural metabolites with wide bioactivities. However, reports related to Laurencia undulata, an edible species used as folk herb, are rarely found to date. In this research, 5-hydroxymethyl-2-furfural (5-HMF) was isolated and characterized by nuclear magnetic resonance (NMR) from Laurencia undulata as well as other marine algae. The following characteristics of 5-HMF were systematically evaluated: its antioxidant activities, such as typical free-radicals scavenging in vitro by electron spin resonance spectrometry (ESR) and intracellular reactive oxygen species (ROS) scavenging; membrane protein oxidation; oxidative enzyme myeloperoxidase (MPO) inhibition; as well as expressions of antioxidative enzymes glutathione (GSH) and superoxide dismutase (SOD) on the gene level using the polymerase chain reaction (PCR) method. The results demonstrated that 5-HMF could be developed as a novel marine natural antioxidant or potential precursor for practical applications in the food, cosmetic, and pharmaceutical fields.

Keywords

References

  1. Antolovich, M., P. D. Prenzler, E. Patsalides, S. McDonald, and K. Robards. 2002. Methods for testing antioxidant activity. Analyst 127: 183-198 https://doi.org/10.1039/b009171p
  2. Baik, J. S., S. S. Kim, J. A. Lee, T. R. Oh, J. Y. Kim, N. H. Lee, and C. G. Hyun, 2008. Chemical composition and biological activities of essential oils extracted from Korean endemic citrus species. J. Microbiol. Biotechnol. 18: 74-79
  3. Beckman, J. S., T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman. 1990. Apparent hydroxyl radical productionby peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A. 87: 1620-1624 https://doi.org/10.1073/pnas.87.4.1620
  4. Bradly, P. P., D. A. Priebat, R. D. Christensen, and G. Rothstein. 1982. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol. 78: 206-209 https://doi.org/10.1111/1523-1747.ep12506462
  5. Davies, K. J., A. T. Quintanilha, G. A. Brooks, and L. Packer. 1982. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 107: 1198-1205 https://doi.org/10.1016/S0006-291X(82)80124-1
  6. Ding, X., M. Y. Wang, Z. L. Yu, W. Hu, and B. C. Cai. 2008. Studies on separation, appraisal and the biological activity of 5-HMF in Comus officinalis. Zhongguo Zhong Yao Za Zhi 3: 4
  7. Fu, Z. Q., M. Y. Wang, and B. C. Cai. 2008. Discussion of 5-hydroxymethylfurfural (5-HMF) in 'Chinese Native Medicine Research Presents.' Zhongguo Zhong Yao Za Zhi 26: 3
  8. Grune, T., L. Klotz, J. Gieche, M. Rudeck, and H. Sies. 2001. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite. Free Rad. Biol. Med. 30: 1243-1253 https://doi.org/10.1016/S0891-5849(01)00515-9
  9. Guo, Q., B. Zhao, S. Shen, J. Hou, J. Hu, and W. Xin. 1999. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochem. Biophys. Acta 1427: 13-23 https://doi.org/10.1016/S0304-4165(98)00168-8
  10. Reo, S. J., J. P. Kim, W.K. Jung, N. H. Lee, H. S. Kang, E. M. Jun, et al. 2008. Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated from a brown alga, Ishige okamurae. J. Microbiol. Biotechnol. 18: 676-681
  11. Hiramoto, K., H. Johkoh, K. I. Sako, and K. Kikugawa. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radical Res. Commun. 19: 323-332 https://doi.org/10.3109/10715769309056521
  12. Ji, N. Y., X. M. Li, K. Li, L. P. Ding, J. B. Gloer, and B. G. Wang. 2007. Diterpenes, sesquiterpenes, and a $C_{15}$-acetogenin from the marine red alga Laurencia mariannensis. J. Nat. Prod. 70: 1901-1905 https://doi.org/10.1021/np070378b
  13. Jung, W.K., I. Choi, S. Oh, S. G. Park, S. K. Seo, S. W. Lee, et al. 2008. Anti-asthmatic effect of marine red alga (Laurencia undulata) polyphenolic extracts in a murine model of asthma. Food Chem. Toxicol. 47: 293-297
  14. Levine, R. L., D. Garland, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. W. Ahn, S. Shaltiel, and E. R. Stadtrnan. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464-478 https://doi.org/10.1016/0076-6879(90)86141-H
  15. Liang, H., J. He, A. G. Ma, P. H. Zhang, S. L. Bi, and D. Y. Shi. 2007. Effect of ethanol extract of alga Laurencia supplementation on DNA oxidation and alkylation damage in mice. Asia Pac. J. Clin. Nutr. 16(Suppl): 164-168
  16. Liu, C. L., Y. S. Chen, J. H. Yang, B. H. Chiang, and C. K. Hsu. 2007. Trace element water improves the antioxidant activity of buckwheat (Fagopyrum esculentum Moench) sprouts. J. Agric. Food Chem. 55: 8934-8940 https://doi.org/10.1021/jf0716275
  17. Nanjo, F., K. Goto, R. Seto, M. Suzuki, M. Sakai, and Y. Hara. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radical Biol. Med. 21: 895-902 https://doi.org/10.1016/0891-5849(96)00237-7
  18. Odetti, P., S. Garibaldi, G. Noberasco, I. Aragno, S. Valentini, N. Traverso, and U. M. Marinari. 1999. Levels of carbonyl groups in plasma proteins of type 2 diabetes mellitus subjects. Acta Diabetol. 36: 179-183 https://doi.org/10.1007/s005920050164
  19. Pan, Y. M., J. C. Zhu, H. S. Wang, X. P. Y. Zhang, C. H. He, X. W. Ji, and H. Y. Li. 2007. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem. 103: 913-918 https://doi.org/10.1016/j.foodchem.2006.09.044
  20. Pec, M. K., K. Moser-Thier, J. J. Fernandez, M. L. Souto, and E. Kubista. 1999. Growth inhibition by dehydrothyrsiferol - a non-Pgp modulator, derived from a marine red alga - in human breast cancer cell lines. Int. J. Oncol. 14: 739-743
  21. Rajapakse, N., M. M. Kim, E. Mendis, and S. K. Kim. 2007. Inhibition of free radical-mediatedoxidation of cellular biomolecules by carboxylated chitooligosaccharides. Bioorg. Med. Chem. 15: 997-1003 https://doi.org/10.1016/j.bmc.2006.10.030
  22. Reed, D. J. and M. W. Farris. 1984. Glutathion depletion and susceptibility. Pharmacol. Rev. 36: 25S-33S
  23. Rosen, G M. and E. J. Rauckman. 1984. Spin trapping of superoxide and hydroxyl radicals. Methods Enzymol. 105: 198-209 https://doi.org/10.1016/S0076-6879(84)05026-6
  24. Silva, B. A., F. Ferreres, J. O. Malva, and A. C. P. Dias. 2005. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 90: 157-167 https://doi.org/10.1016/j.foodchem.2004.03.049
  25. Sun, J., D. Y. Shi, M. Ma, S. Li, S. J. Wang, L. J. Han, et al. 2005. Sesquiterpenes from the red alga Laurencia tristicha. J. Nat. Prod. 68: 915-919 https://doi.org/10.1021/np050096g
  26. Suzuki, M., E. Kurosawa, and K. Kurata. 1987. (E)-2-Tridecyl-2-heptadecenal, an unusual metabolite from the red alga Laurencia species. Bull. Chem. Soc. Jpn. 60: 3793-3794 https://doi.org/10.1246/bcsj.60.3793
  27. Winterbourn, C. C., M. C. M. Vissers, and A. J. Kettle. 2000. Myeloperoxidase. Curr. Opin. Hematol. 7: 53-58 https://doi.org/10.1097/00062752-200001000-00010
  28. Xu, Q., Y. H. Li, and X. Y. Lu. 2007. Investigation on influencing factors of 5-HMF content in Schisandra. J. Zhejiang Univ. Sci. B 8: 439-445 https://doi.org/10.1631/jzus.2007.B0439
  29. Zhong, X. Y., W. Holzgreve, and D. J. Huang. 2008. Isolation of cell-free RNA from maternal plasma. Methods Mol. Biol. 444: 269-273 https://doi.org/10.1007/978-1-59745-066-9_21

Cited by

  1. The protective role of 5-HMF against hypoxic injury vol.16, pp.3, 2011, https://doi.org/10.1007/s12192-010-0238-2
  2. The protective role of 5-hydroxymethyl-2-furfural (5-HMF) against acute hypobaric hypoxia vol.16, pp.5, 2009, https://doi.org/10.1007/s12192-011-0264-8
  3. Contribution to the characterisation of honey-based Sardinian product abbamele: Volatile aroma composition, honey marker compounds and antioxidant activity vol.124, pp.1, 2009, https://doi.org/10.1016/j.foodchem.2010.06.047
  4. In vitro synergistic anti-oxidant activities of solvent-extracted fractions from Astragalus membranaceus and Glycyrrhiza uralensis vol.44, pp.8, 2011, https://doi.org/10.1016/j.lwt.2011.02.017
  5. Development and validation of an HPLC method to determine metabolites of 5‐hydroxymethylfurfural (5‐HMF) vol.35, pp.19, 2012, https://doi.org/10.1002/jssc.201200251
  6. 5-hydroxymethyl-2-furfural prolongs survival and inhibits oxidative stress in a mouse model of forebrain ischemia vol.7, pp.22, 2012, https://doi.org/10.3969/j.issn.1673-5374.2012.22.007
  7. Identification and Mode of Action of 5-Hydroxymethyl-2-furfural (5-HMF) and 1-Methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic Acid (MTCA) as Potent Xanthine Oxidase Inhibitors in Vinegars vol.60, pp.39, 2012, https://doi.org/10.1021/jf302711e
  8. Determination of metabolites of 5‐hydroxymethylfurfural in human urine after oral application vol.36, pp.4, 2009, https://doi.org/10.1002/jssc.201200768
  9. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources vol.113, pp.3, 2009, https://doi.org/10.1021/cr300182k
  10. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources vol.113, pp.3, 2009, https://doi.org/10.1021/cr300182k
  11. 감귤박 에탄올추출물과 열수추출물의 영양성분 및 항산화 활성 vol.42, pp.9, 2009, https://doi.org/10.3746/jkfn.2013.42.9.1345
  12. Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages vol.25, pp.6, 2013, https://doi.org/10.1007/s10811-013-0023-6
  13. A new phenyl glycoside from the aerial parts of Equisetum hyemale. vol.28, pp.21, 2009, https://doi.org/10.1080/14786419.2014.947491
  14. Enhanced Hypoxia-Inducible Factor (HIF)-1α Stability Induced by 5-Hydroxymethyl-2-Furfural (5-HMF) Contributes to Protection against Hypoxia vol.20, pp.None, 2009, https://doi.org/10.2119/molmed.2014.00007
  15. Anti-inflammatory effect of polyphenol-rich extract from the red alga Callophyllis japonica in lipopolysaccharide-induced RAW 264.7 macrophages vol.29, pp.4, 2009, https://doi.org/10.4490/algae.2014.29.4.343
  16. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes vol.166, pp.None, 2009, https://doi.org/10.1016/j.foodchem.2014.06.018
  17. Conversion of plant materials into hydroxymethylfurfural using ionic liquids vol.13, pp.2, 2009, https://doi.org/10.1007/s10311-015-0503-9
  18. Consumption of 5-hydroxymethylfurfural-rich dried fruits is associated with reduction in urinary excretion of 8-hydroxy-2′-deoxyguanosine: a randomized clinical trial vol.242, pp.5, 2009, https://doi.org/10.1007/s00217-015-2575-y
  19. New developments in anti‐sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo? vol.175, pp.1, 2016, https://doi.org/10.1111/bjh.14264
  20. Carbon dots with tunable concentrations of trapped anti-oxidant as an efficient metal-free catalyst for electrochemical water oxidation vol.4, pp.38, 2009, https://doi.org/10.1039/c6ta04737h
  21. Hypolipidemic and antioxidant effects of ethanol extract of Cassia fistula fruit in hyperlipidemic mice vol.54, pp.12, 2009, https://doi.org/10.1080/13880209.2016.1185445
  22. DNA and BSA damage inhibitory activities, and anti-acetylcholinesterase, anti-porcine α-amylase and antioxidant properties of Dolichos lablab beans vol.8, pp.2, 2009, https://doi.org/10.1039/c6fo01164k
  23. Inhibition of IL-4 but not IFN-γ production by splenocytes of mice immunized with ovalbumin after oral administration of 5-hydroxymethylfurfural vol.28, pp.1, 2017, https://doi.org/10.1080/09540105.2016.1202208
  24. Cardioprotective effects of 5‐hydroxymethylfurfural mediated by inhibition of L‐type Ca 2+ currents vol.174, pp.20, 2009, https://doi.org/10.1111/bph.13967
  25. Assessing the effect of 5‐hydroxymethylfurfural on selected components of immune responses in mice immunised with ovalbumin vol.97, pp.12, 2009, https://doi.org/10.1002/jsfa.8261
  26. Experimental study of the protective effect of mesosilica-supported 5-hydroxymethylfurfural on UV-induced aging of human dermal fibroblasts vol.8, pp.44, 2009, https://doi.org/10.1039/c8ra03980a
  27. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health vol.12, pp.None, 2009, https://doi.org/10.1186/s13065-018-0408-3
  28. Developments in the Monitoring of Patulin in Fruits Using Liquid Chromatography: an Overview vol.12, pp.1, 2019, https://doi.org/10.1007/s12161-018-1340-9
  29. 5-Hydroxymethylfurfural Mitigates Lipopolysaccharide-Stimulated Inflammation via Suppression of MAPK, NF-κB and mTOR Activation in RAW 264.7 Cells vol.24, pp.2, 2019, https://doi.org/10.3390/molecules24020275
  30. Chitosan‐glucose Maillard reaction products and their preservative effects on fresh grass carp (Ctenopharyngodon idellus) fillets during cold storage vol.99, pp.5, 2009, https://doi.org/10.1002/jsfa.9408
  31. Antidiabetic Screening of Phenolic-rich Extracts of Selected Medicinal Spices vol.43, pp.2, 2009, https://doi.org/10.1007/s40995-017-0410-y
  32. Puffing of Rehmannia glutinosa enhances anti-oxidant capacity and down-regulates IL-6 production in RAW 264.7 cells vol.28, pp.4, 2019, https://doi.org/10.1007/s10068-019-00566-z
  33. Investigation of antioxidative effects of a cardioprotective solution in heart tissue vol.461, pp.1, 2009, https://doi.org/10.1007/s11010-019-03591-y
  34. Stabilization of Angiotensin-(1-7) in Cardioprotective Solutions vol.25, pp.4, 2009, https://doi.org/10.1007/s10989-018-9773-y
  35. Potential neurotoxicity of 5-hydroxymethylfurfural and its oligomers: widespread substances in carbohydrate-containing foods vol.11, pp.5, 2009, https://doi.org/10.1039/c9fo02526j
  36. Thermodynamic and kinetic studies of the antiradical activity of 5-hydroxymethylfurfural: computational insights vol.44, pp.23, 2009, https://doi.org/10.1039/d0nj01567a
  37. Metabolites with Antioxidant Activity from Marine Macroalgae vol.10, pp.9, 2009, https://doi.org/10.3390/antiox10091431
  38. 5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: recent developments vol.40, pp.4, 2021, https://doi.org/10.1080/15569543.2020.1756857
  39. Mechanism Analysis of Antiangiogenic D-Isofloridoside from Marine Edible Red algae Laurencia undulata in HUVEC and HT1080 cell vol.69, pp.46, 2021, https://doi.org/10.1021/acs.jafc.1c05007