DOI QR코드

DOI QR Code

Structural Investigation and Homology Modeling Studies of Native and Truncated Forms of $\alpha$-Amylases from Sclerotinia sclerotiorum

  • Published : 2009.11.30

Abstract

The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes. Two $\alpha$-amylases ScAmy54 and ScAmy43 predicted to play an important role in starch degradation were showed to produce specific oligosaccharides essentially maltotriose that have a considerable commercial interest. Primary structure of the two enzymes was established by N-terminal sequencing, MALDI-TOF masse spectrometry and cDNA cloning. The two proteins have the same N-terminal catalytic domain and ScAmy43 derived from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. Data of genomic analysis suggested that the two enzymes originated from the same $\alpha$-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during S. sclerotiorum cultivation. The structural gene of Scamy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 residues. ScAmy54 exhibited high amino acid homology with other liquefying fungal $\alpha$-amylases essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3-D structure of 2guy from A. niger as template. ScAmy54 is composed by three domains A, B, and C, including the well-known $(\beta/\alpha)_8$ barrel motif in domain A, have a typical structure of $\alpha$-amylase family, whereas ScAmy43 contained only tow domains A and B is the first fungal $\alpha$-amylase described until now with the smallest catalytic domain.

Keywords

References

  1. Ben Abdeimalek Khedher, I., M. C. Urdaci, F. Limam, M. N. Marzouki, J. M. Schmitter, and P. Bressollier. 2008. Purification, characterization and partial primary sequence of a majormaltotriose-producing $\alpha$-amylase ScAmy43 from Sclerotinia sclerotiorum. J. Microbiol. Biotechnol. 18: 1555-1563
  2. Ben Abdeimalek Khedher, I., P. Bressollier, M. C. Urdaci, F. Limam, and M. N. Marzouki. 2008. Biochemical characterization of Sclerotinia sclerotiorum $\alpha$-amylase ScAmyl, assay in starch liquefaction treatments. J. Food Biochem. 32: 597-614 https://doi.org/10.1111/j.1745-4514.2008.00193.x
  3. Ben Ali, M., M. Mezghani, and S. Bejar. 1999. A thermostable $\alpha$-amylase producing maltohexaose from a new isolated Bacillus sp. USI00: Study of activity and molecular cloning of the corresponding gene. Enzyme Microb. Technol. 24: 584-589 https://doi.org/10.1016/S0141-0229(98)00165-3
  4. Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp, and D. L. Wheeler. 2000. GenBank. Nucleic Acids Res. 28: 15-18 https://doi.org/10.1093/nar/28.1.15
  5. Birney, E., M. Clamp, and R. Durbin. 2004. Genewise and Genomewise. Genome Res. 14: 988-995 https://doi.org/10.1101/gr.1865504
  6. Boel, E. L., A. M. Brzozowski, Z. Derewenda, G. G. Dodson, V. J. Jensen, S. B. Petersen, H. Swift, L. Thim, and H. F. Woldike. 1990. Calcium binding in $\alpha$-amylases, an X-Ray diffraction study at 2.1 A resolutions of two enzymes from Aspergillus. Biochemistry 29: 6244-6249 https://doi.org/10.1021/bi00478a019
  7. Boland, G. J. and R. Hall. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16: 94-108
  8. Brzozowski, A. M. and G. J. Davies. 1997. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 $\AA$ resolution. Biochemistry 36: 10837-10845 https://doi.org/10.1021/bi970539i
  9. Brzozowski, A. M., D. M. Lawson, J. P. Turkenburg, H. Bisgaard-Frantzen, A. Svendsen, T. V. Borchert, Z. Dauter, K. S. Wilson, and G. J. Davies. 2000. Structural analysis of a chimeric bacterial $\alpha$-amylase, High-resolution analysis of native and ligand complexes. Biochemistry 39: 9099-9107 https://doi.org/10.1021/bi0000317
  10. Champreda, V., P. Kanokratana, R. Sriprang, S. Tanapongpipat, and L. Eurwilaichitr, 2007. Purification, biochemical characterization, and gene cloning of a new extracellular therrnotolerant and glucose tolerant maltooligosaccharide-forming alpha-amylase from an endophytic ascomycete Fusicoccum sp. BCC4124. Biosci. Biotechnol. Biochem. 71: 2010-2020 https://doi.org/10.1271/bbb.70198
  11. Coutinho, P. M. and B. Henrissat 1999. Carbohydrate-active enzymes: An integrated database approach, pp. 3-12. In H. J. Gilbert, G Davies, B. Henrissat, and B. Svensson (eds.). Recent advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, U.K
  12. Ellouze, O., M. Mejri, I. Smaali, F. Limarn, and M. N. Marzouki. 2007. Induction, properties and application of xylanases activity from Sclerotinia sclerotiorum S2 fungus. J. Food Biochem. 31: 96-107 https://doi.org/10.1111/j.1745-4514.2007.00101.x
  13. Gurr, S. J., S. E. Unkles, and J. R. Kinghoun. 1987. The structure and organization of nuclear genes of filamentous fungi, pp. 93-139. In J. R. Kinghoun (ed.). Gene Structure in Eukaryotic Microbe. IRL Press, Oxford
  14. Hayashi, T., T. Akiba, and K. Horikoshi. 1989. Properties of new alkaline maltohexaose forming amylase. Appl. Microbiol. Biotechnol. 28: 281-285
  15. Iefuji, H., M. Chino, M. Kato, and Y. Limura, 1996. Raw starch-digesting and thermostable $\alpha$-amylase from the yeast Cryptococcus sp. S-2: Purification, characterization, cloning and sequencing. Biochem. J. 318: 989-996
  16. Itoh, R., C. Saint-Marc, S. Chaignepain, R. Katahira, J. M. Schmitter, and B. Daignan-Fomier, 2003. The yeast ISNI (YOR155c) gene encodes a new type of IMP-specific 5'-nucleotidase. BMC Biochem. 4: 4-11 https://doi.org/10.1186/1471-2091-4-4
  17. Janecek, S. 2000. Structural features and evolutionary relationships in the $\alpha$-amylase family, pp. 19-54. In M. Ohnishi, T. Hayashi, S. Ishijima, and T. Kuriki (eds.). Glycoenzymes. Japan Scientific Societies Press, Tokyo
  18. Janecek, S. 2002. How many conserved sequence regions are there in the $\alpha$-amylase family? Biologia (Bratislava) 57: 29-41
  19. Janecek, S., B. Svensson, and B. Henrissat. 1997. Domain evolution in the $\alpha$-amylase family. J. Mol. Evol. 45: 322-331 https://doi.org/10.1007/PL00006236
  20. Jespersen, H. M., E. A. Mac Gregor, M. R. Sierks, and B. Svensson. 1991. Comparison of the domain level organization of starch hydro lases and related enzymes. Biochem. J. 280: 51-55
  21. Kaneko, A., S. Sudo, Y. Takayasu-Sakamoto, G. Tamura, T. Ishikawa, and T. Oba. 1996. Molecular cloning and determination of the nucleotide sequence of a gene encoding an acid-stable $\alpha$-amylase from Aspergillus kawachii. J. Ferment. Bioeng. 81: 292-296 https://doi.org/10.1016/0922-338X(96)80579-4
  22. Ke, T., X. D. Ma, P. H. Mao, X. Jin, S. J., Chen, Y. Li, L. X. Ma, and G Y. He. 2007. A mutant $\alpha$-amylase with only part of the catalytic domain and its structural implication. Biotechnol. Lett. 29: 117-122
  23. Kim, T. U., B. G. Gu, J. Y. Jeong, S. M. Byurn, and Y. C. Shin. 1995. Purification and characterization of a maltotetraose-forming alkaline $\alpha$-amylase from an alkaliphilic Bacillus strain GM 8901. Appl. Environ. Microbiol. 61: 3105-3112
  24. Kyte, J. and R. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  25. Leemhuis, H., U. F Wehmeier, and L. Dijkhuizen. 2004. Single amino acid mutations interchange the reaction specificities of cyclodextrin glycosyltransferase and the acarbose-modifying enzyme acarviosyl transferase. Biochemistry 43: 13204-13213 https://doi.org/10.1021/bi049015q
  26. Long, C. M., M. J. Virolli, S. Chang, and M. J. Bibb. 1987. Alpha-amylases genes of Streptomyces limosus: Nucleotide sequence, expression motifs and amino acid sequence homology to mammalian and invertebrate $\alpha$-amylase. J. Bacteriol. 169: 5745-5754
  27. MacGregor, E. A, S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the $\alpha$-amylase family of enzymes. Biochem. Biophys. Acta 1546: 1-20 https://doi.org/10.1016/S0167-4838(00)00302-2
  28. MacGregor, E. A. 1988. $\alpha$-amylase structure and activity. J. Protein Chem. 7: 399-415 https://doi.org/10.1007/BF01024888
  29. Machius, M., G. Wiegand, and R. Huber. 1995. Crystal Structure of Calcium-depleted Bacillus licheniformis $\alpha$-amylase at 2.2 $\AA$ Resolution. J. Mol. Biol. 246: 545-559 https://doi.org/10.1006/jmbi.1994.0106
  30. Mandels, M. and J. Webber. 1969. The production of cellulases. Adv. Chem. Ser. 95: 391-412 https://doi.org/10.1021/ba-1969-0095.ch023
  31. Marco, J. L., L. A. Bataus, F. F. Valencia, C. J. Ulhoa, S. AstolfiFilho, and C. R. Felix. 1996. Purification and characterization of a truncated Bacillus subtilis $\alpha$-amylase produced by Escherichia coli. Appl. Microbiol. Biotechnol. 44: 746-752
  32. Matsubara, T., Y. Ben Ammar, T. Anindyawati, S. Yamamoto, K. Ito, M. lizuka, and N. Minamiura. 2004. Molecular cloning and determination of the nucleotide sequence of raw starch digesting $\alpha$-amylase from Aspergillus awamori KT-11. J. Biochem. Mol. Biol. 37: 429-438 https://doi.org/10.5483/BMBRep.2004.37.4.429
  33. Matsuura, Y. 2002. A possible mechanism of catalysis involving three essential residues in the enzymes of $\alpha$-amylase family. Biologia (Bratislava) 57: 21-27
  34. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  35. Nakada, T., M. Kubota, S. Sakari, and Y. Tsujisaka. 1990. Purification and characterization of two forms of maltotetraose-forming amylase from Pseudomonas Stuzeri. Agric. Biol. Chem. 54: 737-743 https://doi.org/10.1271/bbb1961.54.737
  36. Nakajima, R., T. Imanaka, and S. Aiba. 1985. Comparison of amino acid sequences of eleven different amylase. Appl. Microbiol. Biotechnol. 23: 355-360
  37. Nielsen, J. E. and T. V. Borchert. 2000. Protein engineering of bacterial $\alpha$-amylases. Biochem. Biophys. Acta 1543: 253-274 https://doi.org/10.1016/S0167-4838(00)00240-5
  38. Ohdan, K., T. Kuriki, H. Kaneko, J. Shimada, T. Takada, Z. Fujimoto, H. Mizuno, and S. Okada. 1999. Characteristics of two forms of $\alpha$-amylases and structural implication. Appl. Environ. Microbiol. 65: 4652-4658
  39. Qian, M., R. Haser, G. Buisson, E. Duee, and F. Payan. 1994. The active center of a mammalian $\alpha$-amylase. Structure of the complex of a pancreatic $\alpha$-amylase with a carbohydrate inhibitor refined to 2.2 $\AA$ resolutions. Biochemistr. 33: 6284-6294 https://doi.org/10.1021/bi00186a031
  40. Reymond, P., G. Deleage, C. Rascle, and M. Fevre. 1994. Cloning and sequence analysis of a polygalacturonase-encoding gene from the phytopathogenic fungus Sclerotinia sclerotiorum. Gene 146: 233-237 https://doi.org/10.1016/0378-1119(94)90298-4
  41. Robyt, J. F. and R. J. Ackerman. 1971. Isolation, purification and characterization of a maltotetraose-producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys. 145: 105-114 https://doi.org/10.1016/0003-9861(71)90015-4
  42. Sajedi, R. H., M. Taghdir, H. Naderi-Manesh, K. Khajeh, and B. Ranjbar. 2007. Nucleotide sequence, structural investigation and homology modelling studies of $Ca^{2+}$-independent $\alpha$-amylase with acidic pH-profile. J. Biochem. Mol. Biol. 40: 315-324 https://doi.org/10.5483/BMBRep.2007.40.3.315
  43. Sambrook, J. E., F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A laboratory Mammal, New York: Cold Spring Harbor Laboratory Press, New York, U.S.A.
  44. Sanger, F., S. NickIen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5463-5467 https://doi.org/10.1073/pnas.74.12.5463
  45. Schwed, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL. An automated protein homology-modeling Server. Nucleic Acid. Res. 31: 3381-3385 https://doi.org/10.1093/nar/gkg520
  46. Shevchenko, A., M. Wilm, O. Vom, and M. Mann. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858 https://doi.org/10.1021/ac950914h
  47. Sogaard, M., F. L. Olsen, and B. Svensson. 1991. C-terminal processing of barley $\alpha$-amylase 1 in malt, aleurone protoplasts, and yeast. Proc. Natl. Acad. Sci. 88: 8140-8144 https://doi.org/10.1073/pnas.88.18.8140
  48. Steyn, A. J., J. Marmur, and I. S. Pretorius. 1995. Cloning, sequence analysis and expression in yeasts of a cDNA containing a Lipomyces kononenkoae alpha-amylase-encoding gene. Gene 166: 65-71 https://doi.org/10.1016/0378-1119(95)00633-0
  49. Strobl, S., K. Maskos, M. Betz, G Wiegand, R. Huber, F. X. Gomis-Ruth, and R. Glockshuber. 1998. Crystal structure of yellow meal worm $\alpha$-amylase at 1.64 $\AA$ resolutions. J. Mol. Biol. 278: 617-628 https://doi.org/10.1006/jmbi.1998.1667
  50. Svenssen, B. 1994. Protein engineering in the $\alpha$-amylase family: Catalytic mechanism, substrate specificity and stability. Plant Mol. Biol. 25: 141-157 https://doi.org/10.1007/BF00023233
  51. Svenssen, B., M. Tovborg Jensen, H. Mori, K. Sass Bak-Jensen, B. Bonsager, P. K. Nielsen, B. Brite Kram hoft, M. Prae torius-Ibba J. Nohr, and N. Juge. 2002. Fascinating facets of function and structure of amylolytic enzyme of glycoside hydrolase family 13. Biologica (Bratislava) 57: 5-19
  52. Swift, H. J., L. Brady, Z. S. Derewanda, E. J. Dodson, G G Dodson, J. P. Turkenburg, and A. J. Wilkinson. 1991. Structure and molecular model refinement of Aspergillus oryzae (TAKA) $\alpha$-amylase: An application of the simulated-annealing method. Acta Crystallogr. 47: 535-544 https://doi.org/10.1107/S0108768191001970
  53. Takagi, M., S. Lee, and T. Imanaka. 1996. Diversity in size and alkaliphily of thermostable $\alpha$-amylase-pullulanases (AapT) produced by recombinant Escherichia coli, Bacillus subtilis and the wild-type Bacillussp. J. Ferment. Bioeng. 81: 557-559 https://doi.org/10.1016/0922-338X(96)81480-2
  54. Takasaki, Y., M. Kitaiima, T. Tsuruta, M. Nonoguchi, S. Hayashi, and K. Imada. 1991. Maltotriose-producing amylase from Microbacterium imperiale. Agric. Biol. Chem. 55: 687-692 https://doi.org/10.1271/bbb1961.55.687
  55. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  56. Van der Maarel, M. J., B. Vander Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch converting enzymes of the $\alpha$-amylases family. J. Biotechnol. 94: 137-155 https://doi.org/10.1016/S0168-1656(01)00407-2
  57. Vihinen, M., T. Peltonen, A. Litia, I. Suomien, and P. Mantsata. 1994. C-tenninal truncations of a thermostable Bacillus stearothermophilus $\alpha$-amylase. Protein Eng. 7: 1255-1259 https://doi.org/10.1093/protein/7.10.1255
  58. Vujicic-Zagar, A. and B. W. Dijkstra, 2006. Monoclinic crystal form of Aspergillus niger $\alpha$-amylase in complex with maltose at 1.8 Aresolution. Acta Crystallogr. 62: 716-721
  59. Wierenga, R K. 2001. The TIM-barrel fold: A versatile framework for efficient enzymes. FEBS Lett. 492: 193-198 https://doi.org/10.1016/S0014-5793(01)02236-0
  60. Yoshigi, N., T. Chikano, and M. Kamimura 1985. Characterization of maltopentaose-producing bacterium and its cultural conditions. Agric. Biological Chem. 49: 2379-2384 https://doi.org/10.1271/bbb1961.49.2379

Cited by

  1. Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis vol.19, pp.8, 2009, https://doi.org/10.1007/s00894-013-1861-5