DOI QR코드

DOI QR Code

Molecular Cloning and Expression of a Novel Protease-resistant GH-36 $\alpha$-Galactosidase from Rhizopus sp. F78 ACCC 30795

  • Yanan, Cao (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Wang, Yaru (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Luo, Huiying (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Shi, Pengjun (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Meng, Kun (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhou, Zhigang (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Zhifang (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Yao, Bin (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
  • Published : 2009.11.30

Abstract

A 2,172-bp full-length gene (aga-F78), encoding a protease-resistant $\alpha$-galactosidase, was cloned from Rhizopus sp. F78 and expressed in Escherichia coli. The deduced amino acid sequence shared highest identity (45.0%) with an $\alpha$-galactosidase of glycoside hydrolase family 36 from Absidia corymbifera. After one-step purification with a Ni-NTA chelating column, the recombinant Aga-F78 migrated as a single band of ~82 and ~210 kDa on SDS-PAGE and nondenaturing gradient PAGE, respectively, indicating that the native structure of the recombinant Aga-F78 was a trimer. Exhibiting the similar properties as the authentic protein, purified recombinant Aga-F78 was optimally active at $50^{\circ}C$ and pH 4.8, highly pH stable over the pH range 5.0-10.0, more resistant to some cations and proteases, and had wide substrate specificity (pNPG, melidiose, raffinose, and stachyose). The recombinant enzyme also showed good hydrolytic ability to soybean meal, releasing galactose of $415.58\;{\mu}g/g$ soybean meal. When combined with trypsin, the enzyme retained over 90% degradability to soybean meal. These favorable properties make Aga-F78 a potential candidate for applications in the food and feed industries.

Keywords

References

  1. Ademark, P., M. Larsson, F. Tjemeld, and H. Stalbrand. 2001. Multiple $\alpha$-galactosidases from Aspergillus niger: Purification, characterization and substrate specificities. Enzyme Microb. Technol. 29: 441-448 https://doi.org/10.1016/S0141-0229(01)00415-X
  2. Baik, S. H., K. Saito, A. Yokota, K. Asano, and F. Tomita. 2000. Molecular cloning and high-level expression in Escherichia coli of fungal $\alpha$-galactosidase from Abisidia corymbifera IFO8084. J. Biosci, Bioeng. 90: 168-173
  3. Bishop, D. F., D. H. Calhoun, H. S. Bemtein, P. Hantzopoulos, M. Quinn, and R. J. Desnick. 1986. Human $\alpha$-galactosidase A: Nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc. Natl. Acad. Sci. U.S.A. 83: 4859-4863 https://doi.org/10.1073/pnas.83.13.4859
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cao, Y., P. Yang, P. Shi, Y. Wang, H. Luo, K. Meng, et al. 2007. Purification and characterization of a novel protease-resistant $\alpha$-galactosidase from Rhizopus sp. F78 ACCC 30795. Enzyme Microb. Technol. 41: 835-841 https://doi.org/10.1016/j.enzmictec.2007.07.005
  6. Civas, A., R. Eberhard, P. Le Dizet, and F. Petek. 1984. Glycosidases induced in Aspergillus tamarii. Mycelial alpha-D-galactosidases. J. Biochem. 219: 849-855
  7. Clarke, J. H., K. Davidson, J. E. Rixon, J. R. Halstead, M. P. Fransen, H. J. Gilbert, and G. P. Hazlewood. 2000. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, marmanase and $\alpha$-galactosidase. Appl. Microbiol. Biotechnol. 53: 661-667 https://doi.org/10.1007/s002530000344
  8. Fridjonsson, O., H. Watzlawick, A. Gehweiler, T. Rohrhirsch and R. Mattes. 1999. Cloning of the gene encoding a novel thermostable $\alpha$-galactosidase from Thermus brockianus ITI360. Appl. Environ. Microb. 65: 3955-3963
  9. Ghazi, S., J. A. Rooke, and H. Galbraith. 2003. Improvement of the nutritive value of soybean meal by protease and $\alpha$-galactosidase treatment in broiler cockerels and broiler chicks. Brit. Poult. Sci. 44: 410-418 https://doi.org/10.1080/00071660310001598283
  10. Graham, G. C., P. Mayers, and R. J. Henry. 1994. A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biotechniques 16: 48-50
  11. Igbasan, F. A., W. Guenter, and B. A. Slominski. 1997. The effects of pectinase and $\alpha$-galactosidase supplementation on the nutritive value of peas for broiler chickens. Can. J. Anim. Sci. 77: 537-539 https://doi.org/10.4141/A97-036
  12. Ishiguro, M., K. Kaneko, A. Kuno, Y. Koyama, S. Yoshida, G G Park, Y. Sakakibara, I. Kusakabe, and H. Kobayashi. 2001. Purification and characterization of the recombinant Thermus sp. strain T2 $\alpha$-galactosidase expressed in Escherichia coli. Appl. Environ. Microbial. 67: 1601-1606 https://doi.org/10.1128/AEM.67.4.1601-1616.2001
  13. Kondoh, K., K. Morisaki, W. Kim, G. Park, S. Kaneko, and H. Kobayashi. 2005. Cloning and expression of the gene encoding Streptomyces coelicolor A3(2) alpha-galactosidase belonging to family 36. Biotechnol. Lett. 27: 641-647 https://doi.org/10.1007/s10529-005-3660-2
  14. Li, S., W. D. Kim, S. Kaneko, P. A. Prema, M. Nakajima, and H. Kobayashi. 2007. Expression of rice (Oryza sativa L. var. Nipponbare) $\alpha$-galactosidase genes in Escherichia coli and characterization. Biosci. Biotechnol. Biochem. 71: 520-526 https://doi.org/10.1271/bbb.60554
  15. Linden, J. C. 1982. Immobilized $\alpha$-D-galactosidase in the sugar beet industry. Enzyme Microb. Technol. 4: 130-136 https://doi.org/10.1016/0141-0229(82)90103-X
  16. Liu, Y. G. and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragment from PI and YAC clones for chromosome walking. Genomics 25: 674-681 https://doi.org/10.1016/0888-7543(95)80010-J
  17. Luonteri, E., M. Tenkanen, and L. Viikari. 1998. Substrate specificities of Penicillium simplicissimum $\alpha$-galactosidases. Enzyme Microb. Technol. 22: 192-198 https://doi.org/10.1016/S0141-0229(97)00170-1
  18. Mi, S., K. Meng, Y. Wang, Y. Bai, T. Yuan, H. Luo, and B. Yao. 2007. Molecular cloning and characterization of a novel $\alpha$-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme Microb. Technol. 40: 1373-1380 https://doi.org/10.1016/j.enzmictec.2006.10.017
  19. Mulimani, V. H. and Rarnalingam. 1995. Enzymic hydrolysis of raffinose and stachyose in soymilk by alpha-galactosidase from Gibberella fujikuroi. Biochem. Mol. Biol. Int. 36: 897-905
  20. Puchal, F. 1999. Role of feed enzyme in poultry nutrition examined. Feedstuffs: 11: 12-14
  21. Rai, M. and H. Padh. 2001. Expression systems for production of heterologous proteins. Curr. Sci. India 80: 1121-1128
  22. Soh, C., Z. M. Ali, and H. Lazan. 2006. Characterisation of an $\alpha$-galactosidase with potential relevance to ripening related texture changes. Phytochemistry 67: 242-254 https://doi.org/10.1016/j.phytochem.2005.09.032
  23. Somiari, R. I. and E. Balogh. 1993. Effect of soaking, cooking and crude $\alpha$-galactosidase treatment on the oligosaccharide content of cowpea flours. J. Sci. Food Agric. 61: 339-343 https://doi.org/10.1002/jsfa.2740610308
  24. Suryani, T. Kimura, K. Sakka, and K. Ohmiya, 2003. Cloning, sequencing and expression of the gene encoding the Clostridium stercorarium $\alpha$-galactosidase Aga36A in Escherichia coli. Biosci. Biotech Biochem. 67: 2160-2166 https://doi.org/10.1271/bbb.67.2160
  25. Tsuboi, K. 2007. Enzyme replacement therapy in patients with Fabry's disease. J. Int. Med. Res. 35: 574-581 https://doi.org/10.1177/147323000703500418
  26. Varbanets, L. D., V. M. Malanchuk, T. T. Buglova, and R. A. Kuhlmann. 2001. Penicillium sp. 23 alpha-galactosidase: Purification and substrate specificity. Carbohydr. Polym. 44: 357-363 https://doi.org/10.1016/S0144-8617(00)00252-6
  27. Veldman, A. V., W. A. G. Veen, D. Barug, and P. A. Van Paridon. 1993. Effects of $\alpha$-galactosidase in feed on ileal piglet digestive physiology. J. Anim. Physiol. Anim. Nutr. 69: 57-65 https://doi.org/10.1111/j.1439-0396.1993.tb00790.x
  28. Zhang, Y., F. Gong, G. Bao, H. Gao, S. Ji, Y. Tan, et al. 2007. B to O erythrocyte conversion by the recombinant $\alpha$-galactosidase. Chin. Med. J. 120: 1145-1150

Cited by

  1. Cloning and Expression of a Thermostable ${\alpha}$-Galactosidase from the Thermophilic Fungus Talaromyces emersonii in the Methylotrophic Yeast Pichia pastoris vol.20, pp.12, 2009, https://doi.org/10.4014/jmb.1005.05043
  2. Integrated approach to produce a recombinant, his-tagged human α-galactosidase a in mammalian cells vol.27, pp.5, 2011, https://doi.org/10.1002/btpr.637
  3. Directed Evolution of Penicillium janczewskii zalesk α-Galactosidase Toward Enhanced Activity and Expression in Pichia pastoris vol.168, pp.3, 2009, https://doi.org/10.1007/s12010-012-9806-5
  4. Cloning, Heterologous Expression, and Characterization of Novel Protease-Resistant ${\alpha}$-Galactosidase from New Sphingomonas Strain vol.22, pp.11, 2009, https://doi.org/10.4014/jmb.1112.12036
  5. Insights into the substrate specificity and synergy with mannanase of family 27 α-galactosidases from Neosartorya fischeri P1 vol.99, pp.3, 2009, https://doi.org/10.1007/s00253-014-6269-3
  6. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides vol.20, pp.8, 2009, https://doi.org/10.3390/molecules200813550
  7. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity vol.13, pp.5, 2018, https://doi.org/10.1371/journal.pone.0197067
  8. Hydrolysis of oligosaccharides by a fungal α‐galactosidase from fruiting bodies of a wild mushroom Leucopaxillus tricolor vol.58, pp.12, 2018, https://doi.org/10.1002/jobm.201800215
  9. Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles vol.208, pp.None, 2009, https://doi.org/10.1016/j.colsurfb.2021.112123