DOI QR코드

DOI QR Code

Distribution Patterns of the Members of Phylum Acidobacteria in Global Soil Samples

  • Lee, Sang-Hoon (Department of Environmental Sciences, Hankuk University of Foreign Studies) ;
  • Cho, Jae-Chang (Department of Environmental Sciences, Hankuk University of Foreign Studies)
  • Published : 2009.11.30

Abstract

The distribution pattern of the phylum Acidobacteria, a previously uncultured bacterial group, was investigated by molecular ecological analyses of global soil samples collected from pristine ecosystems across five continents. Acidobacterial 16S rDNAs were observed in almost all soil samples, and members of acidobacterial primer group A were detected in all samples that harbored the phylum Acidobacteria. Other primer groups, Y, G, and O, showed limited distribution patterns. We further divided the primer groups into acidobacterial subdivisions (class-level). Subdivisional distribution patterns were determined by comparing the observed T-RFs with theoretical T-RFs predicted by in silico digestion of acidobacterial 16S rDNAs. Consistent with the PCR results obtained with subgroup-specific primers, T-RFLP analyses showed that acidobacterial subdivision 1 belonging to primer group A was present in the majority of the soil samples. This study revealed that the phylum Acidobacteria could be globally distributed. At the subdivisional level, acidobacterial subdivision 1 might be the most widely distributed group in this phylum, indicating that members of subdivision 1 might be adapted to various soil environments, and members belonging to other subdivisions might be restricted to certain geographic regions or habitats.

Keywords

References

  1. Barns, S. M., S. L. Takala, and C. R Kuske. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. Microbiol. 65: 1731-1737
  2. Bryant, D. A., A. M. Costas, J. A. Maresca, A. G. Chew, C. G. Klatt, M. M. Bateson, et al. 2007. Candidatus Chloracidobacterium thermophilum: An aerobic phototrophic Acidobacterium. Science 317: 523-526 https://doi.org/10.1126/science.1143236
  3. Cho, J. C. and J. M. Tiedje. 2000. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66: 5448-5456 https://doi.org/10.1128/AEM.66.12.5448-5456.2000
  4. Coates, J. D., D. J. Ellis, C. V. Gaw, and D. R. Lovley. 1999. Geothrixfermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Bacteriol. 49 Pt 4: 1615-1622 https://doi.org/10.1099/00207713-49-4-1615
  5. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kularn, D. M. McGarrell, G. M. Garrity, and J. M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-296 https://doi.org/10.1093/nar/gki038
  6. Davis, K. E., S. J. Joseph, and P. H. Janssen. 2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71: 826-834 https://doi.org/10.1128/AEM.71.2.826-834.2005
  7. Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662-1669
  8. Eichorst, S. A., J. A. Breznak, and T. M. Schmidt. 2007. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73: 2708-2717 https://doi.org/10.1128/AEM.02140-06
  9. Engebretson, J. J. and C. L. Moyer. 2003. Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl. Environ. Microbiol. 69: 4823-4829 https://doi.org/10.1128/AEM.69.8.4823-4829.2003
  10. Fukunaga, Y., M. Kurahashi, K. Yanagi, A. Yokota, and S. Harayama. 2008. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum 'Acidobacteria', Int. J. Syst. Evol. Microbiol. 58: 2597-2601 https://doi.org/10.1099/ijs.0.65589-0
  11. Fulthorpe, R. R., A. N. Rhodes, and J. M. Tiedje. 1998. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl. Environ. Microbiol. 64: 1620-1627
  12. Garrity, G. M., J. A. Bell, and D. B. Searles. 2004. Taxonomic outline of the procaryotes, In: Bergeys Manual of Systematic Bacteriology, 2nd Ed., release 5.0. Springer-Verlag, New York, NY
  13. Garrity, G. M., T. G. Lilburn, J. R Cole, S. H. Harrison, J. Euzeby, and B. J. Tindall. 2007. The Taxonomic Outline of Bacteria and Archaea, release 7.7. http://www.taxonomicoutline.org/indexphp/toba/index
  14. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
  15. Hallberg, K. B. and D. B. Johnson. 2003. Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 71: 139-148 https://doi.org/10.1016/S0304-386X(03)00150-6
  16. Hugenholtz, P., B. M. Goebel, and N. R Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774
  17. Janssen, P. H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719-1728 https://doi.org/10.1128/AEM.72.3.1719-1728.2006
  18. Janssen, P. H., P. S. Yates, B. E. Grinton, P. M. Taylor, and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria; Actinobacteria. Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391-2396 https://doi.org/10.1128/AEM.68.5.2391-2396.2002
  19. Joseph, S. J., P. Hugenholtz, P. Sangwan, C. A. Osborne, and P. H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69: 7210-7215 https://doi.org/10.1128/AEM.69.12.7210-7215.2003
  20. Kaplan, C. W., J. C. Astaire, M. E. Sanders, B. S. Reddy, and C. L. Kitts. 2001. 16S Ribosomal DNA terminal restriction fragment pattern analysis of bacterial communities in feces of rats fed Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 67: 1935-1939 https://doi.org/10.1128/AEM.67.4.1935-1939.2001
  21. Kaplan, C. W. and C. L. Kitts. 2003. Variation between observed and true terminal restriction fragment length is dependent on true TRF length and purine content. J. Microbiol. Methods 54: 121-125 https://doi.org/10.1016/S0167-7012(03)00003-4
  22. Kishimoto, N. and T. Tano. 1987. Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage, and soils. J. Gen. Appl. Microbiol. 33: 11-25 https://doi.org/10.2323/jgam.33.11
  23. Kitts, C. L. 2001. Terminal restriction fragment patterns: A tool for comparing microbial communities and assessing community dynamics. Curr. Issues Intest. Microbiol. 2: 17-25
  24. Koch, I. H., F. Gich, P. F. Dunfield, and J. Overmann. 2008. Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int. J. Syst. Evol. Microbiol. 58: 1114-1122 https://doi.org/10.1099/ijs.0.65303-0
  25. Kuske, C. R., S. M. Barns, and J. D. Busch. 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl. Environ. Microbiol. 63: 3614-3621
  26. LaPara, T. M., C. H. Nakatsu, L. Pantea, and J. E. Alleman. 2000. Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol. 66: 3951-3959 https://doi.org/10.1128/AEM.66.9.3951-3959.2000
  27. Layton, A. C., P. N. Karanth, C. A. Lajoie, A. J. Meyers, J. R. Gregory, R. D. Stapleton, D. E. Taylor, and G S. Sayler. 2000. Quantification of Hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis. Appl. Environ. Microbiol. 66: 1167-1174 https://doi.org/10.1128/AEM.66.3.1167-1174.2000
  28. Lee, S. H., J. O. Ka, and J. C. Cho. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol. Lett. 285: 263-269 https://doi.org/10.1111/j.1574-6968.2008.01232.x
  29. Liesack, W., F. Bak, J. U. Kreft, and E. Stackebrandt. 1994. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch. Microbiol. 162: 85-90 https://doi.org/10.1007/s002030050106
  30. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522
  31. Ludwig, W., S. H. Bauer, M. Bauer, J. Held, G. Kirchhof, R. Schulze, et al. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 153: 181-190 https://doi.org/10.1111/j.1574-6968.1997.tb10480.x
  32. Luna, V. A., D. B. Jernigan, A. Tice, J. D. Kellner, and M. C. Roberts. 2000. A novel multiresistant Streptococcus pneumoniae serogroup 19 clone from Washington State identified by pulsedfield gel electrophoresis and restriction fragment length patterns. J Clin. Microbiol. 38: 1575-1580
  33. Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327 https://doi.org/10.1016/S1369-5274(99)80056-3
  34. Massol-Deya, A. A., D. A. Odelson, R. F. Hickey, and J. M. Tiedje. 1995. Bacterial community fingerprinting of amplified 16S and 16S-23S ribosomal RNA gene sequences and restriction endonuclease analysis (ARDRA), pp. 1-8. In A. D. L. Akkermans, et al. (eds.). Molecular Microbial Ecology Manual. Kluwer Academic Publisher, Dordrecht, The Netherlands
  35. Paster, B. J., W. A. Falkler Jr, C. O. Enwonwu, E. O. Idigbe, K. O. Savage, V. A. Levanos, et al. 2002. Prevalent bacterial species and novel phylotypes in advanced noma lesions. J. Clin. Microbiol. 40: 2187-2191 https://doi.org/10.1128/JCM.40.6.2187-2191.2002
  36. Penn, K., D. Wu, J. A. Eisen, and N. Ward. 2006. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl. Environ. Microbiol. 72: 1680-1683 https://doi.org/10.1128/AEM.72.2.1680-1683.2006
  37. Sait, M., K. E. Davis, and P. H. Janssen. 2006. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72: 1852-1857 https://doi.org/10.1128/AEM.72.3.1852-1857.2006
  38. Sait, M., P. Hugenholtz, and P. H. Janssen. 2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4: 654-666 https://doi.org/10.1046/j.1462-2920.2002.00352.x
  39. Sievert, S. M., J. Kuever, and G. Muyzer. 2000. Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl. Environ. Microbiol. 66: 3102-3109 https://doi.org/10.1128/AEM.66.7.3102-3109.2000
  40. Stevenson, B. S., S. A. Eichorst, J. T. Wertz, T. M. Schmidt, and J. A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70: 4748-4755 https://doi.org/10.1128/AEM.70.8.4748-4755.2004
  41. Zimmermann, J., J. M. Gonzalez, C. Saiz-Jimenez, and W. Ludwig. 2005. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analysis. Geomicrobiol. J. 22: 379-388 https://doi.org/10.1080/01490450500248986

Cited by

  1. Real-time PCR detection of Holophagae (Acidobacteria) and Verrucomicrobia subdivision 1 groups in bulk and leek (Allium porrum) rhizosphere soils vol.83, pp.2, 2009, https://doi.org/10.1016/j.mimet.2010.08.003
  2. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils vol.82, pp.2, 2012, https://doi.org/10.1111/j.1574-6941.2012.01381.x
  3. Bacterial, Archaeal and Fungal Succession in the Forefield of a Receding Glacier vol.63, pp.3, 2009, https://doi.org/10.1007/s00248-011-9991-8
  4. Soil Acidobacterial 16S rRNA Gene Sequences Reveal Subgroup Level Differences between Savanna-Like Cerrado and Atlantic Forest Brazilian Biomes vol.2014, pp.None, 2009, https://doi.org/10.1155/2014/156341
  5. Characterization of Early Microbial Communities on Volcanic Deposits along a Vegetation Gradient on the Island of Miyake, Japan vol.29, pp.1, 2009, https://doi.org/10.1264/jsme2.me13142
  6. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community vol.18, pp.9, 2009, https://doi.org/10.1111/1462-2920.13041