Synchronized Synergism Using Ethanol, L-lysine and $NaBH_4$ Glutaraldehyde Treated Porcine Pericardium

글루타르알데하이드 고정 돼지 심낭에서 Ethanol, L-lysine, $NaBH_4$ 병합 처치시 상승효과

  • Kim, Kwan-Chang (Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of Medicine) ;
  • Kim, Yong-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National College of Medicine) ;
  • Kim, Soo-Hwan (Seoul National University Hospital Clinical Research Institute, Xenotransplantational Research Center) ;
  • Choi, Seung-Hwa (Seoul National University Hospital Clinical Research Institute, Xenotransplantational Research Center)
  • 김관창 (이화여자대학교 의학전문대학원 흉부외과학교실) ;
  • 김용진 (서울대학교 의과대학 흉부외과학교실) ;
  • 김수환 (서울대학교병원 임상의학연구소, 바이오 이종장기개발사업단) ;
  • 최승화 (서울대학교병원 임상의학연구소, 바이오 이종장기개발사업단)
  • Published : 2009.12.05

Abstract

Background: Calcification is the most frequent cause of clinical failure of bioprosthetic tissues that are fabricated from Glutaraldehyde (GA)-fixed porcine valve or bovine pericardium. We recently used a multi-factorial approach of employing different mechanisms to investigate how to reduce the calcification of bioprosthetic tissues. The purpose of the present study was to evaluate the synchronized synergism using ethanol, L-lysine and $NaBH_4$ in glutaraldehyde treated porcine pericardium from the standpoint of calcification and tissue elasticity. Material and Method: Porcine pericardium was fixed with 0.625% GA (commercial fixation). An interim step of ethanol (80%; 1 day at room temperature) or L-lysine (0.1 M; 2 days at $37^{\circ}C$) or $NaBH_4$ (0.1 M; 2 days at room temperature) was followed by completion of the GA fixation (2 days at $4^{\circ}C$ and 7 days at room temperature). The tensile strength and thickness of the samples were measured. The treated pericardiums were implanted subcutaneously into three-week old Sprague-Dawley rats for 8 weeks. The calcium content was assessed by atomic absorption spectroscopy and the histology of the samples. Result: The amount of calcium in the pericardium pretreated with ethanol (13.6${\pm}$10.0 ug/mg, p=0.008), L-lysine (15.3${\pm}$1.0 ug/mg, p=0.002) and both (16.1${\pm}$11.1 ug/mg, p=0.012) was significantly reduced compared with the control (51.2${\pm}$8.5 ug/mg). However, $NaBH_4$ pretreatment (65.7${\pm}$61.8 ug/mg, p=0.653) and combined pretreatment that including ethanol, L-lysine and $NaBH_4$ (92.9${\pm}$58.3 ug/mg, p=0.288) were not significantly different from the controls(51.2${\pm}$8.5 ug/mg). Both the combined pretreatment using ethanol and L-lysine (7.60${\pm}$1.55, p=0.76) and the combined pretreatment that included ethanol, L-lysine and $NaBH_4$ (7.47${\pm}$1.85, p=0.33) increased the tensile strength/thickness ratio compared with that of the controls (4.75${\pm}$1.88). Conclusion: The combined pretreatment using ethanol and L-lysine seemed to decrease the calcification of porcine pericardium fixed with glutaraldehyde, as compared to single pretreatment, and it increase the tissue elasticity, but to the degree that showed synchronized synergism. $NaBH_4$ pretreatment seemed to increase the calcification of porcine pericardium, irrespective of whether single or combined pretreatment was used.

배경: 이종조직의 석회화는 기존에 사용된 돼지 판막이나 소 심낭을 이용한 생체 인공조직의 임상 실패의 주된 원인으로 알려져 있다. 최근에 항석회화 효과를 높이고자 기전이 다른 여러 처치를 병합하는 시도들이 보고되고 있다. 본 연구에서는 작용기전이 다른 ethanol, L-lysine, $NaBH_4$을 병합 처리하였을 때 예상되는 상승 효과를 석회화와 조직의 신축력(elasticity)을 통해 알아보고자 하였다. 대상 및 방법: 0.625% Glutaraldehyde ($4^{\circ}C$에서 2일, 상온에서 7일간)고정한 돼지 심낭을 80% Ethanol (상온에서 1일), 혹은 0.1 M L-lysine ($37^{\circ}C$에서 2일), 혹은 0.1 M $NaBH_4$ (상온에서 2일)로 처리 한 후 각각의 두께(thickness)와 장력(tensile strength)을 측정하였다. 각각의 항석회화 처리한 돼지심낭을 생후 3주된 쥐의 피하조직에 이식하고 8주 뒤 칼슘을 정량하고 조직학적 소견을 관찰하였다. 결과: 0.625% glutaraldehyde 고정만 시행한 군($51.2{\pm}8.5$ ug/mg)과 비교하여 80% Ethanol 처리한 군($13.6{\pm}10.0$ ug/mg, p=0.008)과, L-lysine 처리한 군($15.3{\pm}1.0$ ug/mg, p=0.002), 그리고 80% Ethanol과 L-lysine 처리한 군($16.1{\pm}11.1$ ug/mg, p=0.012)은 통계적으로 의미 있게 칼슘의 침착량이 적었지만, $NaBH_4$만 처리한 군($65.7{\pm}61.8$ ug/mg, p=0.653)과 80% Ethanol, L-lysme, $NaBH_4$로 모두 처리한 군($92.9{\pm}58.3$ ug/mg, p=0.288)은 칼슘의 침착량이 더 많았다. 80% Ethanol과 L-lysine으로 처리한 군과 80% Ethanol, L-lysine, $NaBH_4$로 모두 처리한 군의 장력/두께 비율(tensile strength/thickness ratio)은 각각 $7.60{\pm}1.55$, $7.47{\pm}1.85$로 glutaraldehyde 고정만 시행한 군의 $4.75{\pm}1.88$보다 증가되어 있는 경향을 보였다(p=0.76, p=0.33). 결론: Ethanol과 L-lysine을 돼지심낭에 병합처치 하였을 때, Ethanol과 L-lysine을 단독처치 하였을 때와 비교하여, 비슷한 항석회화 효과와 조직의 신축력을 증가시키는 경향을 보였지만 병합처치에 의한 상승효과를 확인하지는 못하였다. $NaBH_4$는 단독처치 혹은 병합처치하였을 때 모두 석회화를 증가시키는 경향을 보였다.

Keywords

References

  1. Schoen FJ, Levy RJ, Piehler HR. Pathological considerations in replacement cardiac valves. Cardiovase Pathol 1992;1:29-52 https://doi.org/10.1016/1054-8807(92)90006-A
  2. Grunkemeier GL, Jamieson WRE, Miller DC, Starr A. Actuarial versus actual risk of porcine structural valve deterioration. J Thorac Cardiovas Surg 1994;108:709-18
  3. Levy RJ, Schoen FJ, Levy JT, Nelson AC, Howard SL, Oshry LJ. Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am J Pathol 1993;113:143-55
  4. Paul H, Peter Z. Characterization of the immune response to valve bioprostheses and its role in primary tissue failure. Ann Thorac Surg 2001;71:S385 https://doi.org/10.1016/S0003-4975(01)02492-4
  5. Levy RJ, Qu X, Underwood T, Trachy J, Schoen FJ. Calcification of valved aortic allografts in rats: effects of age, crosslinking, inhibitors. J Biomed Mater Res 1995;29:217-26 https://doi.org/10.1002/jbm.820290212
  6. Jorge-Herrero E, Fernandez P, Gutierrez M, Castillo-Olivares JL. Study of the calcification of bovine pericardium: analysis of the implication of lipids and proteoglycans. Biomaterials 1991;12:638-89 https://doi.org/10.1016/0142-9612(91)90117-S
  7. Thomas PJ, James AB, Barbara LC, Frederick JS, Gordon A, Robert JL. Controlled release of ethanehydroxy diphosphonate from polyurethane reservoirs to inhibit calcification of bovine pericardium used in bioprosthetic heart valves. Int J Pharm 1990;59:95-104 https://doi.org/10.1016/0378-5173(90)90083-G
  8. Webb CL, Nguyen NM, Schoen FJ, Levy RJ. Calcification of allograft aortic wall in a rat subdermal model: pathophysiology and inhibition by Al3+ and aminodiphosphonate preincubations. Am J Pathol 1992;141:487-96
  9. Hirsch D, Drader J, Yhomas TJ, Schoen FJ, Levy JT, Levy RJ. Inhibition of calcification of glutaraldehyde pretreated porcine aortic valve cusps with sodium dodecyl sulfate: preincubation and controlled release studies. J Biomed Mater Res 1993;27:1477-84 https://doi.org/10.1002/jbm.820271203
  10. Chen W, Scheon FJ, Levy RJ. Mechanism of efficacy of 2-amino oleic acid for inhibition of calcification of glutaraldehyde pretreated porcine bioprosthetic heart valves. Circulation 1994;90:323-9 https://doi.org/10.1161/01.CIR.90.1.323
  11. Nimni WN, Cheung D, Strates B. Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res 1994;15:465-9 https://doi.org/10.1002/jbm.820150403
  12. Chanda J. Anticalcification treatment of pericardial prostheses. Biomaterials 1994;15:465-9 https://doi.org/10.1016/0142-9612(94)90226-7
  13. Pereira CA, Lee JM, Haberer SA. Effect of alternative crosslinkingmethods on the low strain rate viscoelastic properties of bovine pericardial bioprosthetic material. J Biomed Mater Res 1990;24:345-61 https://doi.org/10.1002/jbm.820240307
  14. Ameli E, Yates T, Hymana P, Zilla P. Detoxication on top of enhanced, diamine-etended glutaraldehyde fixation significantly reduces bioprosthetic root calcification in sheep model. J Heart Valve Disease 2003;12:93-101
  15. Humana P, Bezuidenhouta D, Torriannib M, Hendriksc M, Zilla P. Optimization of diamine bridges in glutaraldehyde treated bioprosthetic aortic wall tissue. Biomaterials 2002; 23:2099-103 https://doi.org/10.1016/S0142-9612(01)00302-7
  16. Lee CH, Vyavahare N, Zand R, et al. Inhibition of aortic wall calcification in bioprosthetic heart valves by ethanol pretreatment: biochemical and biophysical mechanisms. J Biomed Mater Res 1998;42:30-7 https://doi.org/10.1002/(SICI)1097-4636(199810)42:1<30::AID-JBM5>3.0.CO;2-P
  17. Neethling WM, Hodge AJ, Clode P, Glancy R. A multi-step approach in anti-calcification of glutaraldehyde-preserved bovine pericardium. J Cardiovasc Surg (Torino) 2006;47: 711-8
  18. Garcia Paez JM, Jorge-Herrero E, Carrera A, et al. Chemical treatment and tissue selection: factors that influence the mechanical behaviour of porcine pericardium. Biomaterials 2001;22:2759-67 https://doi.org/10.1016/S0142-9612(01)00019-9
  19. Connolyy JM, Alferiev I, Kronsteiner A, Lu Z, Robert J. Levy ethanol inhibition of porcine bioprosthetic heart valve cusp calcification is enhanced by reduction with sodium borohydride. J Heart Valve Disease 2004;13:487-93
  20. Kim KC, Choi YK, Kim SH, et al. Effect of diamine bridges using l-lysine in glutaraldehyde treated porcine pericardium. Korean J Thorac Cardiovasc Surg 2009;42:157-64
  21. Kim KC, Lee C, Choi CH, et al. Development of porcine pericardial heterograft for clinical application (tensile strength-thickness). Korean J Thorac Cardiovasc Surg 2008; 41:170-6
  22. Quesenberry MS, Lee YC. A rapid formaldehyde assay using purpald reagent: application under periodation conditions. Anal Biochem 1996;234:50-5 https://doi.org/10.1006/abio.1996.0048
  23. Maranto A, Schoen F. Alkaline phosphatase activity of glutaraldehyde-treated bovine pericardium used in bioprosthetic cardiac valves. Circ Res 1988;63:844-8 https://doi.org/10.1161/01.RES.63.4.844
  24. Zilla P, Weissenstein C, Bracher M, et al. High glutaraldehyde concentrations reduce rather than increase the calcification of aortic wall tissue. J Heart Valve Dis 1997;6: 502-9
  25. Jorge-Herrero E, Fernandez P, Escudero C, Garcia-Paez JM, Castillo-Olivares JL. Calcification of pericardial tissue pretreated with different amino acids. Biomaterials 1996;17: 571-5 https://doi.org/10.1016/0142-9612(96)88707-2
  26. Moritz A, Grimm M, Eybl E, et al. Improved biocompatibility by post fixation treatment of aldehyde fixed bovine pericardium. Trans Am Sot Artif Intern Organs 1990;36: M300-3
  27. Moritz A, Grimm M, Eybl E, et al. Improved spontaneous endothelialization by postfixation treatment of bovine pericardium. Eur J Cardiothorac Surg 1991;5:155-60 https://doi.org/10.1016/1010-7940(91)90214-5
  28. Eybl E, Grimm M, Grabenwoger M, Bock P, Muller M, Wolner E. Endothelial cell lining of bioprosthetic heart valve materials. J Thorac Cardiovasc Surg 1992;104:763-9 https://doi.org/10.1111/j.1540-8191.1992.tb00778.x
  29. Grabenwoger M, Grimm M, Eybl E, Leukauf C, Plenck H Jr, Bock P. Decreased tissue reaction to bioprosthetic heart valve material after L-giutamic acid treatment. A morphological study. J Biomed Mater Res 1992;26:1231-40 https://doi.org/10.1002/jbm.820260912
  30. Jee KS, Kim YS, Park KD, Kim YH. A novel chemical modification of bioprosthetic tissues using L-arginine. Biomaterials 2003;24:3409-16 https://doi.org/10.1016/S0142-9612(03)00204-7