MIMO-OFDM 기반 SDR 시스템을 위한 효율적인 FFT 프로세서 설계

Design of Efficient FFT Processor for MIMO-OFDM Based SDR Systems

  • 발행 : 2009.12.25

초록

본 논문에서는 MIMO-OFDM 기반의 SDR 시스템을 위한 효율적인 FFT 구조를 제안한다. 제안한 scalable FFT/IFFT 프로세서는 64/128/512/1024/2048-point FFT 연산을 가변적으로 수행할 수 있다. 또한 mixed radix (MR) 기법과 multi-path delay commutator (MDC) 구조를 사용하여 비단순 승산을 줄임으로써 기존의 설계 구조에 비해 시스템 수율 변화 없이 하드웨어 복잡도를 크게 감소시켰다. 제안된 scalable FFT/IFFT 프로세서는 하드웨어 설계 언어 (HDL)를 이용하여 설계 되었고, 0.18um CMOS 스탠다드 셀 라이브러리를 이용하여 논리 합성되었다. 논리합성 결과 4채널 radix-2 single-path delay feed back (R2SDF) FFT 프로세서와 비교시 59% 감소된 게이트 수와 39% 감소된 메모리로 구현 가능함을 확인하였고, 4채널 radix-2 MDC (R2MDC) FFT 프로세서와 비교시 16.4% 감소된 게이트 수와 26.8% 감소된 메모리로 구현 가능함을 확인하였다.

In this paper, an area-efficient FFT processor is proposed for MIMO-OFDM based SDR systems. The proposed scalable FFT processor can support the variable length of 64, 128, 512, 1024 and 2048. By reducing the required number of non-trivial multipliers with mixed-radix (MR) and multi-path delay commutator (MDC) architecture, the complexity of the proposed FFT processor is dramatically decreased without sacrificing system throughput The proposed FFT processor was designed in hardware description language (HDL) and synthesized to gate4eve1 circuits using 0.18um CMOS standard cell library. With the proposed architecture, the gate count for the processor is 46K and the size of memory is 64Kbits, which are reduced by 59% and 39%, respectively, compared with those of the 4-channel radix-2 single-path delay feedback (R2SDF) FFT processor. Also, compared with 4-channel radix-2 MDC (R2MDC) FFT processor, it is confirmed that the gate count and memory size are reduced by 16.4% and 26.8, respectively.

키워드

참고문헌

  1. N, Weste and D. j. Skellem, "VLSI for OFDM," IEEE Commun. Mag., vol 36, no. 10, pp. 127-131, Oct. 1998 https://doi.org/10.1109/35.722148
  2. R. van Nee and R. Prasad, "OFDM for wireless multirnrlia communications," Boston: Artech House, 2000
  3. M. D. Batariere, J. F. Kepler, T. P. Krauss, S. Mukthavaram, J. W. Porter, and F. W. Vook, "An experimental OFDM system for broadband mobile communications," Proc. IEEE Veh. Technol. Conf., vol. 4, pp. 1947-1951, 2001
  4. H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, "A fourth-generation MIMO-OFDM: broadband wireless system: Design, performance, and field trial results," IEEE Commun. Mag., vol. 40, no. 9, pp. 143-149, Sept. 2002 https://doi.org/10.1109/MCOM.2002.1031841
  5. A. van Zelst, Tim C. W. Schenk, "Implementation of a MIMO OFDM-Based wireless LAN system," IEEE Trans. on Signal Processing, vol. 52, no. 2, pp. 483-494, Feb. 2004 https://doi.org/10.1109/TSP.2003.820989
  6. G. L. Stuber, J. R. Barry, S. W. Mclaughlin, Y. Li, M. A. Ingram, and T. H. Pratt, "Broadband MIMO-OFDM wireless conmmications," Proc. IEEE, vol. 92, no. 2, pp. 271-297, Feb. 2004 https://doi.org/10.1109/JPROC.2003.821912
  7. H. Bolcskei and E. Zurich, "MIMO-OFDM wireless systems: basics, perspectives, and challenges," IEEE Trans. Wrreless Commun., vol. 13, no. 4, pp. 31-37, Aug. 2003
  8. Y. W. Lin, and C. Y. Lee, "Design of an FFT/IFFT processor for MIMO OFDM systems," IEEE Trans. on Circuits and Systems, vol. 54, no. 4, pp. 807-815, Apr. 2007 https://doi.org/10.1109/TCSI.2006.888664
  9. 리우 항, 이한우, "MIMO-OFDM 시스템을 위한 고속 저면적 128/64-point radix-24 FFT 프로세서 설계," 전자공학회논문지 제 46권 SD편 제 2호, pp.15-23, 2009년, 2월
  10. J. Mitola, "The Software Radio Architecture," IEEE Commun. Mag., vol. 33, no. 5, pp. 26-38, May 1995 https://doi.org/10.1109/35.393001
  11. C. K. Rauwerda, P. M. Heysters, and C. J. M. Smit, "Towards software defined radios using coarse-grained reconfigurable hardware," IEEE Trans. on VLSI Systems, vol. 16, no. 1, pp. 3-13, Jan. 2008 https://doi.org/10.1109/TVLSI.2007.912075
  12. T. Shono, Y. Shirato, H. Shiba, K. Uehara, K. Araki, and, M. Umehira, "IEEE 802.11 wireless LAN implemented on software defined radio with hybrid programmable architecture," IEEE Trans. on Wrreless Commun., vol. 4, no. 5, pp. 2299-2303, Sep. 2005 https://doi.org/10.1109/TWC.2005.853967
  13. IEEE Std. 802.11n, "Wrreless LAN Medium Access Control (MAC) arrl Physical Layer (PHY) specificatirns," 2005
  14. IEEE Std. 802.16e, "Local and Metropolitan Area Networks-Part 16: Air Interface for Fixed Broad-band Wireless Access System", Oct. 2004
  15. 최원철, 전형구, 이현, 오현서, "재구성 가능한 가변 포인트 IFFT/FFT 프로세서 설계에 관한 연구," 전자공학회논문지 제 41권 TC편 제 12호, pp. 61-68, 2004년, 12월
  16. Petrus, P. et al. "An integrated draft 802.11n compliant MIMO baseband and MAC processor," Proc. of ISSCC'07, pp. 266-268, Feb. 2007
  17. S. He and M. Torkelson, "A New Approach to Pipeline FIT Processor," Parallel Processing Symposium, pp. 766 -770, Apr. 1996
  18. S. He and M. Torkelson, "Designing pipeline FFT processor for OFDM (de)modulation," Proc. IEEE URSI lnt. Signals, Systems, and Electron., vol. 2, PP. 257-262, Oct. 1998
  19. LR Habiner and B. Gold 'ThroIy and Application of Digital Signal Processing,' Prentice-Hall, 1975
  20. T. Sansaloni, A. Perex-Pascual, V. Torres and J. Valls, "Efficient pipeline FFT processors for WLAN MIMO-OFDM systems," Electronics Letters, vol. 41, no. 19, pp. 1043-1044, Sep. 2005 https://doi.org/10.1049/el:20052597
  21. Y. Jung, H. Yoon, and J. Kim, "New efficient FFT algorithm and pipeline implementation results for OFDM/DMT applications," IEEE Trans. Consum, Electron., vol. 49, no. 1, pp. 14-20, Feb. 2003 https://doi.org/10.1109/TCE.2003.1205450
  22. S. Lee, Y. Jung, and J. Kim, "Low complexity pipeline FFT prccessor for MIMO-OFDM systems," IEICE Electronics Express, vol. 4, no. 23, pp. 750-754. Dec. 2007 https://doi.org/10.1587/elex.4.750
  23. G. Bi and E. V. Jones, "A pipelined FFT prccessor for word-sequential data," IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 37, no. 12, pp. 1982-1985, Dec. 1989 https://doi.org/10.1109/29.45545