참고문헌
-
Abrams CJ, Davies NW, Shelton PA, Stanfield PR. The role of a single aspartate residue in ionic selectivity and block of a murine inward rectifier
$K^+$ channel Kir2.1. J Physiol 493: 643-649, 1996 https://doi.org/10.1113/jphysiol.1996.sp021411 -
Alagem N, Dvir M, Reuveny E. Mechanism of
$Ba^{2+}$ block of a mouse inwardly rectifying$K^+$ channel: differential contribution by two discrete residues. J Physiol 534: 381-393, 2001 https://doi.org/10.1111/j.1469-7793.2001.00381.x -
Dart C, Leyland ML, Barrett-Jolley R, Shelton PJ, Spencer PJ, Conley EC, Sutcliffe MJ, Stanfield PR. The dependence of
$Ag+$ block of a potassium channel, murine Kir2.1, on a cysteine residue in the selectivity filter. J Physiol 511: 15-24, 1998 https://doi.org/10.1111/j.1469-7793.1998.015bi.x -
Doring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A. The epithelial inward rectifier channel Kir7.1 displays unusual
$K^+$ permeation properties. J Neurosci 18: 8625-8636, 1998 -
Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, Mackinnon R. The structure of the potassium channel: molecular basis of
$K^+$ conduction and selectivity. Science 280: 69-77, 1998 https://doi.org/10.1126/science.280.5360.69 -
Duprat F, Lesage F, Fink M, Reyes R, Heurateaux C, Lazdunski M. TASK, a human background
$K^+$ channel to sense external pH variations near physiological pH. EMBO J 17: 5464-5471, 1997 -
Fakler B, Brandle U, Bond CH, Glowatzki E, Konig C, Adelman JP, Zenner HP, Ruppersberg JP. A structural determinant of differential sensitivity of cloned inward rectifier
$K^+$ channels to intracellular spermine. FEBS Lett 356: 199-203, 1994 https://doi.org/10.1016/0014-5793(94)01258-X -
Fakler B, Brandle U, Glowatzki E, Weidemann S, Zenner HP, Ruppersberg JP. Strong voltage-dependent inward rectification of inward rectifier
$K^+$ channels is caused by intracellular spermine. Cell 80: 149-154, 1995 https://doi.org/10.1016/0092-8674(95)90459-X -
Ficker E, Taglialatela M, WIBLE BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier
$K^+$ channels. Science 266: 1068-1072, 1994 https://doi.org/10.1126/science.7973666 - Hagiwara S, Miyazaki S, Moody W, Patlak J. Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol 279: 167-185, 1978 https://doi.org/10.1113/jphysiol.1978.sp012338
- Hagiwara S, Yoshii M. Effects of internal potassium and sodium on the anomalous rectification of the starfish egg as examined by internal perfusion. J Physiol 292: 251-265, 1979 https://doi.org/10.1113/jphysiol.1979.sp012849
-
Harris RE, Larsson HP, Isakoff EY. A permanent ion binding site located between two gates of the Shaker
$K^+$ channel. Biophys J 74: 1808-1820, 1998 https://doi.org/10.1016/S0006-3495(98)77891-9 -
Heginbotham L, Lu Z, Abramson T, Mackinnon R. Mutations in the
$K^+$ channel signature sequence. Biophys J 66: 1061-1067, 1994 https://doi.org/10.1016/S0006-3495(94)80887-2 -
Hidalgo P, Mackinnon R. Revealing the architecture of a
$K^+$ channel pore through mutant cycles with a peptide inhibitor. Science 268: 307-310, 1995 https://doi.org/10.1126/science.7716527 - Hurst RS, Toro L, Stefani E. Molecular determinants of external barium block in Shaker potassium channels. FEBS Lett 388: 59-65, 1996 https://doi.org/10.1016/0014-5793(96)00516-9
- Jiang Y, Mackinnon R. The barium site in a potassium channel by x-ray crystallography. J Gen Physiol 115: 269-272, 2000 https://doi.org/10.1085/jgp.115.3.269
-
Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE. A novel inward rectifier
$K^+$ channel with unique pore properties. Neuron 20: 995-1005, 1998 https://doi.org/10.1016/S0896-6273(00)80480-8 - Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82: 488-492, 1985 https://doi.org/10.1073/pnas.82.2.488
- Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922-1926, 2003 https://doi.org/10.1126/science.1085028
-
Lancaster MK, Dibb KM, Quinn CC, Leach R, Lee JK, Findlay JB, Boyett MR. Residues and mechanisms for slow activation and
$Ba^{2+}$ block of the cardiac muscarinic$K^+$ channel, Kir3.1/Kir3.4. J Biol Chem 275: 35831-35839, 2000 https://doi.org/10.1074/jbc.M006565200 -
Lee YM, Yang DK, Ashmole I, Stanfield PR, So I, Kim KW. Residues lining the pore region of the murine inward rectifier
$K^+$ channel (KIR2.1) control$K^+$ blockage. Biophysical J 80: 631A, 2001 - Leech CA, Stanfield PR. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J Physiol 319: 295-309, 1981 https://doi.org/10.1113/jphysiol.1981.sp013909
-
Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romely G, Barhanin J. TWIK-1, a ubiquitous human weakly inward rectifying
$K^+$ channel with a novel structure. EMBO J 15: 1004-1011, 1996 -
Lockless SW, Zhou M, Mackinnon R. Structural and thermodynamic properties of selective ion binding in a
$K^+$ channel. PLoS Biology 5: 1079-1088, 2007 - Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372: 366-369, 1994 https://doi.org/10.1038/372366a0
- Lopatin AN, Makhina EN, Nichols CG. The mechanism of inward rectification of potassium channels: 'long-pore plugging' by cytoplasmic polyamines. J Gen Physiol 106: 923-955, 1995 https://doi.org/10.1085/jgp.106.5.923
-
Lopatin AN, Nichols CG. '
$K^+$ ' Dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1). J Gen Physiol 108: 105-113, 1996 https://doi.org/10.1085/jgp.108.2.105 -
Lu T, Ting AY, Mainland J, Jan LY, Schultz PG, Yang J. Probing ion permeation and gating in a
$K^+$ channel with backbone mutations in the selectivity filter. Nature Neurosci 4: 239-246, 2001 https://doi.org/10.1038/85080 -
Matsuda H, Saigusa A, Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal
$Mg^{2+}$ . Nature 325: 156-159, 1987 https://doi.org/10.1038/325156a0 - Minor DL, Masseling SJ, Jan YN, Jan LY. Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879-891, 1999 https://doi.org/10.1016/S0092-8674(00)80597-8
-
Navaratnam DS, Escobar L, Covarrubias M, Oberholtzer JC. Permeation properties and differential expression across the auditory receptor epithelium of an inward rectifier
$K^+$ channel cloned from the chick inner ear. J Biol Chem 270: 19238-19245, 1995 https://doi.org/10.1074/jbc.270.33.19238 - Neyton J, Miller C. Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol 92: 549-567, 1988a https://doi.org/10.1085/jgp.92.5.549
-
Neyton J, Miller C. Discrete
$Ba^{2+}$ block as a probe of ion occupancy and pore structure in the high conductance$Ca^{2+}$ activated$K^+$ channel. J Gen Physiol 92: 569-586, 1988b https://doi.org/10.1085/jgp.92.5.569 - Nishida M, Cadene M, Chait BT, Mackinnon R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J 26: 4005-4015, 2007 https://doi.org/10.1038/sj.emboj.7601828
-
Reuveny E, Jan YN, Jan LY. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying
$K^+$ channel to$K^+$ -selective permeation. Biophys J 70: 754-761, 1996 https://doi.org/10.1016/S0006-3495(96)79615-7 - Sabirov RZ, Tominaga T, Miwa A, Okada Y, Oiki S. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers. J Gen Physiol 110: 665-677, 1997 https://doi.org/10.1085/jgp.110.6.665
-
Shieh RC, Chang JC, Arreola J. Interaction of
$Ba^{2+}$ with the pores of the cloned inward rectifier$K^+$ channels Kir2.1 expressed in Xenopus oocytes. Biophys J 75: 2313-2322, 1998 https://doi.org/10.1016/S0006-3495(98)77675-1 -
Shioya T, Matsuda H, Noma A. Fast and slow blockades of the inward-rectifier
$K^+$ channel by external divalent cations in guinea-pig cardiac myocytes. Pflügers Arch 422: 427-435, 1993 https://doi.org/10.1007/BF00375067 -
So I, Ashmole I, Davies NW, Sutcliffe MJ, Stanfield PR. The
$K^+$ channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity. J Physiol 531: 37-50, 2001 https://doi.org/10.1111/j.1469-7793.2001.0037j.x - So I, Ashmole I, Soh H, Park CS, Spencer PJ, Leyland M, Stanfield PR. Intrinsic gating in inward rectifier potassium channels (Kir2.1) with low polyamine affinity generated by site directed mutagenesis. Kor J Physiol Pharmacol 7: 131-142, 2003a
- So I, Ashmole I, Stanfield PR. The substates with mutants that negatively charged aspartate in position 172 was replaced with positive charge in murine inward rectifier potassium channel (murine Kir2.1). Kor J Physiol Pharmacol 7: 267-273, 2003b
- Standen NB, Stanfield PR. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J Physiol 280: 169-191, 1978 https://doi.org/10.1113/jphysiol.1978.sp012379
-
Stanfield PR, Davies NW, Shelton PA, Sutcliffe MJ, Khan IA, Brammar WJ, Conley EC. A single aspartate residue is involved in both intrinsic gating and blockage by
$Mg^{2+}$ of the inward rectifier, IRK1. J Physiol 478: 1-6, 1994 https://doi.org/10.1113/jphysiol.1994.sp020225 -
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier
$K^+$ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145: 47-179, 2002 https://doi.org/10.1007/BFb0116431 -
Thompson GA, Passmore GM, Spencer PJ, Davies NW, Stanfield PR. Blockage of inward rectifier potassium channels (murine Kir2.1) by
$Ba^{2+}$ is influenced by an aspartate residue (D172). J Physiol 511P: 146P, 1998 -
Thompson GA, Leyland ML, Ashmole I, Sutcliffe MJ, Stanfield PR. Residues beyond the selectivity filter of the
$K^+$ channel Kir2.1 regulate permeation and block by external$Rb^+$ and$Cs^+$ . J Physiol 526: 231-240, 2000a https://doi.org/10.1111/j.1469-7793.2000.00231.x -
Thompson GA, Leyland ML, Ashmole I, Stanfield PR. Residues in H5 and M2 of murine Kir2.1 regulate
$Ba^{2+}$ block. J Physiol 526P: 10S, 2000b -
Topert C, Doring F, Wischmeyer E, Karschin C, Brockhaus J, Ballanyi K, Derst C, Karschin A. Kir2.4: a novel
$K^+$ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J Neurosci 18: 4096-4105, 1998 - Woodhull AM. Ionic blockage of sodium channels in nerve. J Gen Physiol 61: 687-708, 1973 https://doi.org/10.1085/jgp.61.6.687
- Yang J, Jan YN, Jan LY. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15: 1441-1447, 1995 https://doi.org/10.1016/0896-6273(95)90021-7
-
Zhou H, Chepilko S, Schutt W, Choe H, Palmer LG, Sackin H. Mutations in the pore region of ROMK enhance
$Ba^{2+}$ block. Am J Physiol 271: C1949-C1956, 1996 https://doi.org/10.1152/ajpcell.1996.271.6.C1949